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Mid-Term Test 1

Question 1.

(a) State the formula for the Taylor polynomial Tn,a of degree n of a function f at the point
a.

[10 marks]

Let f : [0,∞)→ R be defined by f(x) = 1/
√

1 + 2x.

(b) Determine the Taylor polynomials T2,0 and T3,0 of degree 2 and 3, respectively, for f at
a = 0. [15 marks]

(c) Using the Lagrange form of the remainder term, or otherwise, show that

T3,0(x) < f(x) < T2,0(x) for all x > 0 .

[10 marks]

Answer 1.

(a)

Tn,a(x) =
n∑

k=0

f (k)(a)

k!
(x− a)k .

[10 marks]

(b) From f(x) = (1 + 2x)−1/2 compute

f ′(x) = −(1 + 2x)−3/2, f ′′(x) = 3(1 + 2x)−5/2, f ′′′(x) = −15(1 + 2x)−7/2.

Therefore, f(0) = 1, f ′(0) = −1, f ′′(0) = 3, f ′′′(0) = −15 and [5 marks]

T2,0(x) = 1− x+
3x2

2
and T3,0(x) = 1− x+

3x2

2
− 5x3

2
.

[5+5 marks]

(c) Let x > 0. Taylor’s Theorem tells us that f(x) = T2,0(x) +R2, for some c ∈ (0, x) where

R2 =
−15(1 + 2c)−7/2

3!
x3 =

−5

2

x3

(1 + 2c)7/2
.

[5 marks]

Since 0 < c < x we have,

−5x3

2
< R2 < 0

and therefore T3,0(x) < f(x) < T2,0(x), as required. [5 marks]
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Answer 1. (Continue)



Mid-Term Test 3

Question 2.

(a) Give the definition of f : D → R being differentiable at a point a ∈ D. [10 marks]

(b) Define f : R→ R by f(x) =

2x3 cos

(
1

x

)
x 6= 0

0 x = 0
.

Prove that f ′(0) = 0. [15 marks]

(c) Define g : R→ R by g(x) =

2x cos

(
1

x

)
x 6= 0

0 x = 0
.

Is g differentiable at 0? Briefly justify your answer. [10 marks]

Answer 2.

(a) f is differentiable at a ∈ D if the limit

lim
x→a

f(x)− f(a)

x− a
exists. [10 marks]

(b) Given any ε > 0, choose δ =
√
ε/2. [5 marks for choosing a valid δ]

So if 0 < |x| < δ then∣∣∣∣f(x)− f(0)

x− 0
− 0

∣∣∣∣ =

∣∣∣∣2x3 cos(1/x)

x

∣∣∣∣ = |2x2 cos(1/x)| ≤ |2x2| = 2|x|2 < 2δ2 = ε.

[8 marks]

Here we have used that | cos(1/x)| ≤ 1 for all x 6= 0. [2 marks]

Hence,

lim
x→0

f(x)− f(0)

x− 0
= 0

and so f ′(0) = 0, as required.

Full marks will also be achieved for the following type of solution:∣∣∣∣f(x)− f(0)

x− 0
− 0

∣∣∣∣ =

∣∣∣∣2x3 cos(1/x)

x

∣∣∣∣ = |2x2 cos(1/x)| ≤ |2x2| = 2x2.

(Here we have used that | cos(1/x)| ≤ 1 for all x 6= 0.) 2x2 → 0 as x → 0. Thus,

limx→0
f(x)−f(0)

x−0
= 0 and so f ′(0) = 0.

(c) g is not differentiable at 0. [3 marks]

Indeed, if x 6= 0 then

g(x)− g(0)

x− 0
=

2x cos(1/x)

x
= 2 cos(1/x)

and limx→0 2 cos(1/x) does not exist (since given any a ∈ [−2, 2] there exists an x arbitrarily

close to 0 such that 2 cos(1/x) = a). Thus, limx→0(
g(x)−g(0)

x−0
) does not exist and so g is

not differentiable at 0. [7 marks]
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Answer 2. (Continue)



Mid-Term Test 5

Question 3.

(a) State the Mean Value Theorem. [15 marks]

(b) Suppose that 0 < a < b. By applying the Mean Value Theorem to the logarithm function
show that

1− a

b
< log

(
b

a

)
<
b

a
− 1.

You may assume standard properties of the logarithm function. [15 marks]

Answer 3.

(a) MVT: Let f be continuous on [a, b] and differentiable on (a, b).

[5 marks]

Then there exists c ∈ (a, b) such that

[5 marks]

f ′(c) =
f(b)− f(a)

b− a
.

[5 marks]

(b) Let f : [a, b]→ R be defined by f(x) = log(x). f is continuous on [a, b] and differentiable
on (a, b). Thus, by the Mean Value Theorem there exists c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
=

log b− log a

b− a
.

[5 marks]

Note that f ′(c) = 1/c and log(b)− log(a) = log(b/a) therefore

1

c
=

log
(

b
a

)
b− a

.

[5 marks]

Since 0 < a < c < b, we have 1/b < 1/c < 1/a. Thus,

1

b
<

log
(

b
a

)
b− a

<
1

a
.

Multiplying by (b− a) gives

1− a

b
< log

(
b

a

)
<
b

a
− 1,

as desired. [5 marks]
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Answer 3. (Continue)


