MTH5105 Differential and Integral Analysis 2012-2013

Solutions 1

1 Exercises for Feedback

1) Determine at which points the following two functions are differentiable, evaluating the derivative wherever it exists.
(a) $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto(x+1)|x|$,
(b) $g: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto(x-1)|x-1|$.

Solution:

(a) The function f is not differentiable at 0 , but is differentiable at all $x \in \mathbb{R} \backslash\{0\}$.

The formula for its derivative is:

$$
f^{\prime}(x)= \begin{cases}2 x+1 & x>0 \\ \text { undefined } & x=0 \\ -2 x-1 & x<0\end{cases}
$$

To prove non-differentiability at 0 , note that

$$
\frac{f(x)-f(0)}{x-0}=\frac{(x+1)|x|-0}{x}= \begin{cases}x+1 & x>0 \\ -x-1 & x<0\end{cases}
$$

so that the limit $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x}$ does not exist
(because $\lim _{x \searrow 0} \frac{f(x)-f(0)}{x}=1 \neq-1=\lim _{x \nearrow 0} \frac{f(x)-f(0)}{x}$).
To prove differentiability of f at $x \in \mathbb{R} \backslash\{0\}$, one method is to use the definition

$$
|x|= \begin{cases}x & x>0 \\ -x & x<0\end{cases}
$$

to write

$$
f(x)=\left\{\begin{array}{ll}
(x+1) x & x>0 \\
-(x+1) x & x<0
\end{array},\right.
$$

and then use that the function $x \mapsto(x+1) x$ is differentiable, with derivative equal to $2 x+1$, to deduce that f is differentiable everywhere on $\mathbb{R} \backslash\{0\}$, with

$$
f^{\prime}(x)= \begin{cases}2 x+1 & x>0 \\ -2 x-1 & x<0\end{cases}
$$

An alternative proof is to work directly with the definition of the derivative, as follows:

For $a>0$, we have

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{x \rightarrow a} \frac{(x+1)|x|-(a+1)|a|}{x-a} \\
& =\lim _{x \rightarrow a} \frac{(x+1) x-(a+1) a}{x-a}=\lim _{x \rightarrow a}(x+a+1)=2 a+1
\end{aligned}
$$

(Strictly speaking, some argument is needed as to why we can replace $|x|$ by x when calculating the above limit. It suffices to say that x becomes positive as $x \rightarrow a$ when $a>0$. Or, more formally, in the definition of the limit one can replace δ by $\delta^{\prime}=\min \{\delta, a\}$ as then $|x-a|<\delta^{\prime}$ implies $|x-a|<a$ and thus $x>0$. However, I don't require this degree of formality.)
Similarly, for $a<0$ we have

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{x \rightarrow a} \frac{(x+1)|x|-(a+1)|a|}{x-a} \\
& =\lim _{x \rightarrow a} \frac{(x+1)(-x)-(a+1)(-a)}{x-a}=\lim _{x \rightarrow a}(-x-a-1)=-2 a-1
\end{aligned}
$$

(Again, some argument is needed as to why we can replace $|x|$ by $-x$ when calculating the limit; it suffices to say that x becomes negative as $x \rightarrow a$ when $a<0$).
(b) The function g is differentiable at all points of \mathbb{R}, and its derivative is given by the formula

$$
g^{\prime}(x)= \begin{cases}2(x-1) & x>1 \\ 0 & x=1 \\ -2(x-1) & x<1\end{cases}
$$

or, in other words, $g^{\prime}(x)=2|x-1|$.
How do we prove this?
It is relatively easy to see that g is differentiable at points $x \neq 1$: for $x>1$ we note that $g(x)=(x-1)^{2}$, which is differentiable with derivative $2(x-1)$, while for $x<1$ we note that $g(x)=-(x-1)^{2}$, which is differentiable with derivative $-2(x-1)$.
A more careful proof of this, working directly with the definition of derivative, is as follows:
For $a>1$, we have

$$
\begin{aligned}
g^{\prime}(a) & =\lim _{x \rightarrow a} \frac{g(x)-g(a)}{x-a}=\lim _{x \rightarrow a} \frac{(x-1)|x-1|-(a-1)|a-1|}{x-a} \\
& =\lim _{x \rightarrow a} \frac{(x-1)^{2}-(a-1)^{2}}{x-a}=\lim _{x \rightarrow a}(x+a-2)=2(a-1)
\end{aligned}
$$

while for $a<1$, we have

$$
\begin{aligned}
g^{\prime}(a) & =\lim _{x \rightarrow a} \frac{g(x)-g(a)}{x-a}=\lim _{x \rightarrow a} \frac{(x-1)|x-1|-(a-1)|a-1|}{x-a} \\
& =\lim _{x \rightarrow a} \frac{-(x-1)^{2}+(a-1)^{2}}{x-a}=\lim _{x \rightarrow a}(-x-a-2)=-2(a-1)
\end{aligned}
$$

Lastly, to prove differentiability at $a=1$, we have

$$
g^{\prime}(1)=\lim _{x \rightarrow 1} \frac{g(x)-g(1)}{x-1}=\lim _{x \rightarrow 1} \frac{(x-1)|x-1|-0}{x-1}=\lim _{x \rightarrow 1}|x-1|=0 .
$$

2 Extra Exercises

2) Prove that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f(x)= \begin{cases}x^{2} \sin \left(1 / x^{2}\right) & x \neq 0 \\ 0 & x=0\end{cases}
$$

is differentiable at zero and find $f^{\prime}(0)$.

Solution:

Consider the difference quotient

$$
\frac{f(x)-f(0)}{x-0}=\frac{x^{2} \sin \left(1 / x^{2}\right)-0}{x}=x \sin \left(1 / x^{2}\right) .
$$

Given any $\varepsilon>0$, let $\delta=\varepsilon$. Then given any $0<|x|<\delta$,

$$
\left|x \sin \left(1 / x^{2}\right)-0\right|=|x|\left|\sin \left(1 / x^{2}\right)\right| \leq|x|<\delta=\varepsilon
$$

(here we used that $\left|\sin \left(1 / x^{2}\right)\right| \leq 1$ for all $x \neq 0$). So by definition,

$$
\lim _{x \rightarrow 0} x \sin \left(1 / x^{2}\right)=0
$$

Therefore f is differentiable at zero with $f^{\prime}(0)=0$.
3) Let $f:[-1,1] \rightarrow \mathbb{R}$ be continuous on $[-1,1]$, differentiable at zero and $f(0)=0$. Show that the function

$$
g(x)= \begin{cases}f(x) / x & x \neq 0 \\ f^{\prime}(0) & x=0\end{cases}
$$

is continuous at zero.
Is g continuous for $x \neq 0$?
Deduce that there is some number M such that

$$
f(x) / x \leq M \quad \text { for all } \quad x \in[-1,1] \backslash\{0\}
$$

Solution:

A function g is continuous at a if $\lim _{x \rightarrow a} g(x)=g(a)$.
With $a=0$, this gives

$$
\lim _{x \rightarrow 0} g(x)=\lim _{x \rightarrow 0} \frac{f(x)}{x}=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=f^{\prime}(0)=g(0)
$$

so g is continuous at 0 .
For $x \neq 0, g$ is continuous since it is a quotient of continuous functions.
By the boundedness principle (recall this from MTH5104: Convergence and Continuity!), a continuous function on a closed interval attains it maximum and minimum.
Therefore there exists a number M such that $g(x) \leq M$ for all $x \in[-1,1]$.
4) Give an example of a function that is differentiable on (a, b) but that cannot be made differentiable on $[a, b]$ by any definition of $f(a)$ or $f(b)$. Can you give an example where f is bounded?

Solution:

There are many possible examples, for example if we define $f(x)=\frac{1}{(x-a)(b-x)}$ on (a, b) then f is differentiable on (a, b) but cannot be made to be continuous at a or b by any definition of $f(a)$ or $f(b)$.
We get a bounded function if we compose this with sin, i.e. if we define

$$
f(x)=\sin \left(\frac{1}{(x-a)(b-x)}\right)
$$

on (a, b), then again f is differentiable on (a, b) but cannot be made to be continuous at a or b by any definition of $f(a)$ or $f(b)$. However, once $f(a)$ and $f(b)$ are defined, the resulting function is clearly bounded on $[a, b]$.

