MTH5105 Differential and Integral Analysis 2012-2013

Solutions 2

1 Exercises for Feedback

1) Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $\left|f^{\prime}(x)\right| \leq 1$ for all $x \in \mathbb{R}$. Show that

$$
|f(x)-f(y)| \leq|x-y|
$$

for all $x, y \in \mathbb{R}$.

Solution:

Let $x, y \in \mathbb{R}$. The required inequality is clearly true if $x=y$ (in which case it becomes an equality), so without loss of generality suppose $x<y$. Then f is continuous on $[x, y]$ and differentiable on (x, y), so we can apply the Mean Value Theorem to f on the interval $[x, y]$. The MVT implies that there exists $c \in(x, y)$ such that

$$
\frac{f(y)-f(x)}{y-x}=f^{\prime}(c)
$$

But $\left|f^{\prime}(c)\right| \leq 1$ by hypothesis, therefore

$$
\left|\frac{f(y)-f(x)}{y-x}\right|=\left|f^{\prime}(c)\right| \leq 1
$$

which implies $|f(y)-f(x)| \leq|y-x|$, as required.
2) Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies

$$
|f(x)-f(y)| \leq(x-y)^{2}
$$

for all $x, y \in \mathbb{R}$. Show that f is constant. Hint: try to compute the derivative of f first.

Solution:

From the inequality it follows that for all $x, a \in \mathbb{R}($ with $x \neq a)$,

$$
\left|\frac{f(x)-f(a)}{x-a}\right| \leq|x-a|
$$

We claim this implies f is differentiable at a, with $f^{\prime}(a)=0$. To see this, just note that for any $\varepsilon>0$ we may choose $\delta=\varepsilon$, and then if $0<|x-a|<\delta$ then

$$
\left|\frac{f(x)-f(a)}{x-a}-0\right|=\left|\frac{f(x)-f(a)}{x-a}\right| \leq|x-a|<\delta=\varepsilon
$$

In other words,

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=0
$$

By Theorem 2.5 it follows that f is constant when restricted to any closed interval; hence $f: \mathbb{R} \rightarrow \mathbb{R}$ is constant.

2 Extra Exercises

3) Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable with

$$
f^{\prime}=g \quad \text { and } \quad g^{\prime}=-f .
$$

Show that between every two zeros of f there is a zero of g and between every two zeros of g there is a zero of f.

Solution:

Choose $a, b \in \mathbb{R}$ with $a<b$ such that $f(a)=f(b)=0$.
As f is differentiable on \mathbb{R}, the assumptions of Rolle's Theorem are satisfied on $[a, b]$, i.e. f continuous on $[a, b]$ and differentiable on (a, b).
Therefore there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$.
As $f^{\prime}=g, g(c)=f^{\prime}(c)=0$.
An analogous argument is valid with f and g exchanged.
4) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be twice differentiable $\left(f^{\prime \prime}=\left(f^{\prime}\right)^{\prime}\right)$ with

$$
f(0)=f^{\prime}(0)=0 \quad \text { and } \quad f(1)=1
$$

Show that there exists $c \in(0,1)$ such that $f^{\prime \prime}(c)>1$.

Solution:

As f is differentiable on \mathbb{R}, the assumptions of the MVT are satisfied on $[0,1]$, i.e. f continuous on $[0,1]$ and differentiable on $(0,1)$.
Therefore there exists $d \in(0,1)$ such that

$$
f^{\prime}(d)=\frac{f(1)-f(0)}{1-0}=1
$$

As f^{\prime} is differentiable on \mathbb{R}, the assumptions of the MVT are satisfied on $[0, d]$, i.e. f^{\prime} continuous on $[0, d]$ and differentiable on $(0, d)$.
Therefore there exists $c \in(0, d)$ such that

$$
f^{\prime \prime}(c)=\frac{f^{\prime}(d)-f^{\prime}(0)}{d-0}=\frac{1}{d} .
$$

As $d \in(0,1), 1 / d>1$.
5) Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b). Prove that f is decreasing on $[a, b]$ (i.e. $x_{1}<x_{2}$ implies $f\left(x_{1}\right) \geq f\left(x_{2}\right)$) if and only if $f^{\prime}(x) \leq 0$ for all $x \in(a, b)$.

Solution:

First suppose $f^{\prime}(x) \leq 0$ for all $x \in(a, b)$. For $x_{1}<x_{2}$, the Mean Value Theorem (applied to the interval $\left.\left[x_{1}, x_{2}\right]\right)$ implies there exists $c \in\left(x_{1}, x_{2}\right)$ such that $\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=f^{\prime}(c) \leq 0$. Therefore $f\left(x_{2}\right)-f\left(x_{1}\right) \leq 0$, i.e. $f\left(x_{2}\right) \leq f\left(x_{1}\right.$, i.e. f is decreasing, as required.
Now assume that f is decreasing, and suppose (in order to obtain a contradiction) that $f^{\prime}(d)>0$ for some $d \in(a, b)$. Taking $\varepsilon=f^{\prime}(d) / 2>0$ in the definition of the derivative (as a limit), we see there exists $\delta>0$ such that if $x>d$ with $x-d<\delta$ then

$$
\left|\frac{f(x)-f(d)}{x-d}-f^{\prime}(d)\right|<\frac{f^{\prime}(d)}{2}
$$

Therefore $\frac{f(x)-f(d)}{x-d}>\frac{f^{\prime}(d)}{2}>0$, and hence $f(x)>f(d)$. Since $x>d$, this contradicts the fact that f is decreasing, as required.
(Note that this question resembles Theorem 2.4 (b), which states that if $f^{\prime}(x)<0$ for all $x \in(a, b)$, then f is strictly decreasing on $[a, b]$, i.e. $x_{1}<x_{2}$ implies $f\left(x_{1}\right)>f\left(x_{2}\right)$.)
6) Suppose that f is continuous on $[0,1]$, differentiable on $(0,1)$, and $f(0)=0$. Prove that if f^{\prime} is decreasing on $(0,1)$, then the function $g:(0,1) \rightarrow \mathbb{R}$ given by $g(x)=f(x) / x$ is decreasing on $(0,1)$.
Solution:
Since g is differentiable on $(0,1)$ it suffices, by question 5 , to show that $g^{\prime}(x) \leq 0$ for all $x \in(0,1)$. As

$$
g^{\prime}(x)=\frac{f^{\prime}(x) x-f(x)}{x^{2}},
$$

we only need to show that $f^{\prime}(x) x-f(x) \leq 0$.
Applying the MVT to f on $[0, x]$, there exists $c \in(0, x)$ such that $f(x)-f(0)=f^{\prime}(c)(x-0)$. As f^{\prime} is decreasing and $c<x$, then $f^{\prime}(x) \leq f^{\prime}(c)$. Therefore

$$
f(x)=f^{\prime}(c) x \geq f^{\prime}(x) x
$$

and hence $f^{\prime}(x) x-f(x) \leq 0$ for all $x \in(0,1)$.

