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Solutions 3

1 Exercises for Feedback

1) The functions sinh and cosh are given by

(a)
(b)

(¢)
(d)

()

1

sinh: R — R, T i(exp(x) —exp(—2x)) ,
1

cosh:R—R, x i(exp(x) + exp(—1)) .

Prove that sinh and cosh are differentiable and that sinh’ = cosh and cosh’ = sinh.
Prove that the function
f(x) = cosh?(z) — sinh?(x)
is constant by considering f'(z).
What is the value of the constant?
Prove that sinh is invertible.

Prove that sinh(R) = R. Hint: show that sinh(2x) > x for x > 0, and mimic the proof
of the statement that exp(R) = RT.

Prove that arsinh = sinh ™! is differentiable, and that
1
Vita?’

arsinh’(z) =

(a)

(b)

()

(d)

The exponential function exp is differentiable (by definition), therefore sinh and cosh
are differentiable. Using exp’ = exp, together with the chain rule, the derivatives follow
immediately.
f is differentiable, and f’(x) = 2cosh(x)sinh(x) — 2sinh(z) cosh(z) = 0. (To see this
one can apply the chain rule or the product rule.) By Theorem 2.5, f is constant. Now
£(0) = cosh?(0) — sinh?(0) = 12 — 02 = 1, so cosh?(z) — sinh?(z) = 1.
In lectures we proved that exp(y) > 0 for all y € R. So cosh(z) > 0 for all z € R.
Hence, sinh’(z) = cosh(z) > 0 for all # € R. Therefore sinh is strictly increasing by
Theorem 2.4, and therefore invertible by the Corollary after Theorem 4.2.
First, note that 0 € sinh(R) because sinh(0) =0 = c.
If 2 > 0 then exp(x) > 1 4 x (see proof of Theorem 3.3) and exp(—z) < 1 (since exp is
strictly increasing, and exp(0) = 1), so sinh(x) > x/2.
Let ¢ > 0. From

sinh(0) = 0 < ¢ < sinh(2¢)
it follows by the IVT applied to the interval [0,2¢], that there exists an = € (0, 2¢) such
that sinh(z) = c¢. Therefore RT C sinh(R).
Let ¢ < 0. Since Rt C sinh(R) we can find y € RT such that sinh(y) = —¢, since sinh
is an odd function (i.e. sinh(—xz) = —sinh(z) for all x € R) we see that sinh(—y) =
—sinh(y) = —(—c¢) = ¢. Therefore R~ C sinh(R).
So we have shown that R = R~ U {0} UR" C sinh(R), and hence that sinh(R) = R.



(e) Now sinh’(z) = cosh(z) > 0 for all z € R, therefore by Theorem 4.6, arsinh is differen-

tiable and 1
inh'(z) = ———— .
arsink () cosh(arsinh(x))
Now cosh(z) = 4/1+sinh?(z) (from (b); we take the positive square root because

cosh(z) is positive), so arsinh’(z) = 1/v/1 + 22.

2 Extra Exercises

2) (a) Find a bijective, continuously differentiable function f : R — R with f/(0) = 0 and a
continuous inverse.

(b) Let f: R — R be differentiable and decreasing. Prove or disprove: If lim,_, f(x) = 0,
then lim,_,o f'(z) = 0.

Solution:

(a) Let f: R — R be given by f(x) = 3.
f is differentiable with continuous derivative f’(z) = 3z2. We have f’(0) = 0.
The inverse is f~': R — R, @+ /3.
As f is strictly increasing on R, f is injective. f(R) = R implies that f is surjective as
well, so f is bijective.
As f is differentiable, it is continuous. Therefore f~! is also continuous, by Theorem
4.5.
(b) This can be disproved by a counterexample.
Let f: R — R be given by f(z) = —=z.
f is differentiable and f’(z) = —1 for all z.
lim,_, f(z) =0, but lim, o f'(z) = —1.
3) Using the Intermediate Value Theorem, prove that a continuous function maps intervals to
intervals.
Solution:

We use the following characterisation of an interval: I C R is an interval if and only if for all
T1, 20 € I with 1 < T,
r<c<zxrg=cel.

Let J = f(I). We need to show that J is an interval, i.e. for all y1,ys € J with y1 < yo,
N <c<yy=ceJ:

Let y1,y2 € J with y; < yo. Then there exist x1,xs € I such that y; = f(x1) and yo = f(22).
As y1 # yo, necessarily x1 # x2 also, so either 1 < x5 or xo < 7.

Consider, without loss of generality, the case 1 < x3. By assumption, f is a continuous
function on I, so it is a continuous function on [x1, z2] (or [ze, z1], if T2 < x1).

Hence, by the intermediate value theorem, for all ¢ with y; < ¢ < y» there exists an a €
[x1,x2] such that f(a) =c.

This implies that ¢ € J.



