MTH5105 Differential and Integral Analysis 2012-2013

Solutions 3

1 Exercises for Feedback

1) The functions sinh and cosh are given by

$$
\begin{aligned}
\sinh : \mathbb{R} \rightarrow \mathbb{R}, & x \mapsto \frac{1}{2}(\exp (x)-\exp (-x)) \\
\cosh : \mathbb{R} \rightarrow \mathbb{R}, & x \mapsto \frac{1}{2}(\exp (x)+\exp (-x))
\end{aligned}
$$

(a) Prove that sinh and cosh are differentiable and that $\sinh ^{\prime}=\cosh$ and $\cosh ^{\prime}=\sinh$.
(b) Prove that the function

$$
f(x)=\cosh ^{2}(x)-\sinh ^{2}(x)
$$

is constant by considering $f^{\prime}(x)$.
What is the value of the constant?
(c) Prove that sinh is invertible.
(d) Prove that $\sinh (\mathbb{R})=\mathbb{R}$. Hint: show that $\sinh (2 x)>x$ for $x>0$, and mimic the proof of the statement that $\exp (\mathbb{R})=\mathbb{R}^{+}$.
(e) Prove that arsinh $=\sinh ^{-1}$ is differentiable, and that

$$
\operatorname{arsinh}^{\prime}(x)=\frac{1}{\sqrt{1+x^{2}}}
$$

Solution:
(a) The exponential function exp is differentiable (by definition), therefore sinh and cosh are differentiable. Using $\exp ^{\prime}=\exp$, together with the chain rule, the derivatives follow immediately.
(b) f is differentiable, and $f^{\prime}(x)=2 \cosh (x) \sinh (x)-2 \sinh (x) \cosh (x)=0$. (To see this one can apply the chain rule or the product rule.) By Theorem 2.5, f is constant. Now $f(0)=\cosh ^{2}(0)-\sinh ^{2}(0)=1^{2}-0^{2}=1$, so $\cosh ^{2}(x)-\sinh ^{2}(x)=1$.
(c) In lectures we proved that $\exp (y)>0$ for all $y \in \mathbb{R}$. So $\cosh (x)>0$ for all $x \in \mathbb{R}$. Hence, $\sinh ^{\prime}(x)=\cosh (x)>0$ for all $x \in \mathbb{R}$. Therefore \sinh is strictly increasing by Theorem 2.4, and therefore invertible by the Corollary after Theorem 4.2.
(d) First, note that $0 \in \sinh (\mathbb{R})$ because $\sinh (0)=0=c$.

If $x>0$ then $\exp (x)>1+x$ (see proof of Theorem 3.3) and $\exp (-x)<1$ (since exp is strictly increasing, and $\exp (0)=1)$, so $\sinh (x)>x / 2$.
Let $c>0$. From

$$
\sinh (0)=0<c<\sinh (2 c)
$$

it follows by the IVT applied to the interval $[0,2 c]$, that there exists an $x \in(0,2 c)$ such that $\sinh (x)=c$. Therefore $\mathbb{R}^{+} \subset \sinh (\mathbb{R})$.
Let $c<0$. Since $\mathbb{R}^{+} \subset \sinh (\mathbb{R})$ we can find $y \in \mathbb{R}^{+}$such that $\sinh (y)=-c$, since \sinh is an odd function (i.e. $\sinh (-x)=-\sinh (x)$ for all $x \in \mathbb{R}$) we see that $\sinh (-y)=$ $-\sinh (y)=-(-c)=c$. Therefore $\mathbb{R}^{-} \subset \sinh (\mathbb{R})$.
So we have shown that $\mathbb{R}=\mathbb{R}^{-} \cup\{0\} \cup \mathbb{R}^{+} \subset \sinh (\mathbb{R})$, and hence that $\sinh (\mathbb{R})=\mathbb{R}$.
(e) Now $\sinh ^{\prime}(x)=\cosh (x)>0$ for all $x \in \mathbb{R}$, therefore by Theorem 4.6, arsinh is differentiable and

$$
\operatorname{arsinh}^{\prime}(x)=\frac{1}{\cosh (\operatorname{arsinh}(x))} .
$$

Now $\cosh (x)=\sqrt{1+\sinh ^{2}(x)}$ (from (b); we take the positive square root because $\cosh (x)$ is positive), so $\operatorname{arsinh}^{\prime}(x)=1 / \sqrt{1+x^{2}}$.

2 Extra Exercises

2) (a) Find a bijective, continuously differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f^{\prime}(0)=0$ and a continuous inverse.
(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable and decreasing. Prove or disprove: If $\lim _{x \rightarrow 0} f(x)=0$, then $\lim _{x \rightarrow 0} f^{\prime}(x)=0$.

Solution:

(a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=x^{3}$.
f is differentiable with continuous derivative $f^{\prime}(x)=3 x^{2}$. We have $f^{\prime}(0)=0$.
The inverse is $f^{-1}: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto x^{1 / 3}$.
As f is strictly increasing on \mathbb{R}, f is injective. $f(\mathbb{R})=\mathbb{R}$ implies that f is surjective as well, so f is bijective.
As f is differentiable, it is continuous. Therefore f^{-1} is also continuous, by Theorem 4.5.
(b) This can be disproved by a counterexample.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=-x$.
f is differentiable and $f^{\prime}(x)=-1$ for all x.
$\lim _{x \rightarrow 0} f(x)=0$, but $\lim _{x \rightarrow 0} f^{\prime}(x)=-1$.
3) Using the Intermediate Value Theorem, prove that a continuous function maps intervals to intervals.

Solution:

We use the following characterisation of an interval: $I \subseteq \mathbb{R}$ is an interval if and only if for all $x_{1}, x_{2} \in I$ with $x_{1}<x_{2}$,

$$
x_{1}<c<x_{2} \Rightarrow c \in I
$$

Let $J=f(I)$. We need to show that J is an interval, i.e. for all $y_{1}, y_{2} \in J$ with $y_{1}<y_{2}$, $y_{1}<c<y_{2} \Rightarrow c \in J:$
Let $y_{1}, y_{2} \in J$ with $y_{1}<y_{2}$. Then there exist $x_{1}, x_{2} \in I$ such that $y_{1}=f\left(x_{1}\right)$ and $y_{2}=f\left(x_{2}\right)$.
As $y_{1} \neq y_{2}$, necessarily $x_{1} \neq x_{2}$ also, so either $x_{1}<x_{2}$ or $x_{2}<x_{1}$.
Consider, without loss of generality, the case $x_{1}<x_{2}$. By assumption, f is a continuous function on I, so it is a continuous function on $\left[x_{1}, x_{2}\right]$ (or $\left[x_{2}, x_{1}\right]$, if $x_{2}<x_{1}$).
Hence, by the intermediate value theorem, for all c with $y_{1}<c<y_{2}$ there exists an $a \in$ $\left[x_{1}, x_{2}\right]$ such that $f(a)=c$.
This implies that $c \in J$.

