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Solutions 3

1 Exercises for Feedback

1) The functions sinh and cosh are given by

sinh : R→ R , x 7→ 1
2

(exp(x)− exp(−x)) ,

cosh : R→ R , x 7→ 1
2

(exp(x) + exp(−x)) .

(a) Prove that sinh and cosh are differentiable and that sinh′ = cosh and cosh′ = sinh.
(b) Prove that the function

f(x) = cosh2(x)− sinh2(x)

is constant by considering f ′(x).
What is the value of the constant?

(c) Prove that sinh is invertible.
(d) Prove that sinh(R) = R. Hint: show that sinh(2x) > x for x > 0, and mimic the proof

of the statement that exp(R) = R+.
(e) Prove that arsinh = sinh−1 is differentiable, and that

arsinh′(x) =
1√

1 + x2
.

Solution:

(a) The exponential function exp is differentiable (by definition), therefore sinh and cosh
are differentiable. Using exp′ = exp, together with the chain rule, the derivatives follow
immediately.

(b) f is differentiable, and f ′(x) = 2 cosh(x) sinh(x) − 2 sinh(x) cosh(x) = 0. (To see this
one can apply the chain rule or the product rule.) By Theorem 2.5, f is constant. Now
f(0) = cosh2(0)− sinh2(0) = 12 − 02 = 1, so cosh2(x)− sinh2(x) = 1.

(c) In lectures we proved that exp(y) > 0 for all y ∈ R. So cosh(x) > 0 for all x ∈ R.
Hence, sinh′(x) = cosh(x) > 0 for all x ∈ R. Therefore sinh is strictly increasing by
Theorem 2.4, and therefore invertible by the Corollary after Theorem 4.2.

(d) First, note that 0 ∈ sinh(R) because sinh(0) = 0 = c.
If x > 0 then exp(x) > 1 + x (see proof of Theorem 3.3) and exp(−x) < 1 (since exp is
strictly increasing, and exp(0) = 1), so sinh(x) > x/2.
Let c > 0. From

sinh(0) = 0 < c < sinh(2c)

it follows by the IVT applied to the interval [0, 2c], that there exists an x ∈ (0, 2c) such
that sinh(x) = c. Therefore R+ ⊂ sinh(R).
Let c < 0. Since R+ ⊂ sinh(R) we can find y ∈ R+ such that sinh(y) = −c, since sinh
is an odd function (i.e. sinh(−x) = − sinh(x) for all x ∈ R) we see that sinh(−y) =
− sinh(y) = −(−c) = c. Therefore R− ⊂ sinh(R).
So we have shown that R = R− ∪ {0} ∪ R+ ⊂ sinh(R), and hence that sinh(R) = R.



(e) Now sinh′(x) = cosh(x) > 0 for all x ∈ R, therefore by Theorem 4.6, arsinh is differen-
tiable and

arsinh′(x) =
1

cosh(arsinh(x))
.

Now cosh(x) =
√

1 + sinh2(x) (from (b); we take the positive square root because

cosh(x) is positive), so arsinh′(x) = 1/
√

1 + x2.

2 Extra Exercises

2) (a) Find a bijective, continuously differentiable function f : R → R with f ′(0) = 0 and a
continuous inverse.

(b) Let f : R→ R be differentiable and decreasing. Prove or disprove: If limx→0 f(x) = 0,
then limx→0 f ′(x) = 0.

Solution:

(a) Let f : R→ R be given by f(x) = x3.
f is differentiable with continuous derivative f ′(x) = 3x2. We have f ′(0) = 0.
The inverse is f−1 : R→ R, x 7→ x1/3.
As f is strictly increasing on R, f is injective. f(R) = R implies that f is surjective as
well, so f is bijective.
As f is differentiable, it is continuous. Therefore f−1 is also continuous, by Theorem
4.5.

(b) This can be disproved by a counterexample.
Let f : R→ R be given by f(x) = −x.
f is differentiable and f ′(x) = −1 for all x.
limx→0 f(x) = 0, but limx→0 f ′(x) = −1.

3) Using the Intermediate Value Theorem, prove that a continuous function maps intervals to
intervals.

Solution:

We use the following characterisation of an interval: I ⊆ R is an interval if and only if for all
x1, x2 ∈ I with x1 < x2,

x1 < c < x2 ⇒ c ∈ I .

Let J = f(I). We need to show that J is an interval, i.e. for all y1, y2 ∈ J with y1 < y2,
y1 < c < y2 ⇒ c ∈ J :

Let y1, y2 ∈ J with y1 < y2. Then there exist x1, x2 ∈ I such that y1 = f(x1) and y2 = f(x2).

As y1 6= y2, necessarily x1 6= x2 also, so either x1 < x2 or x2 < x1.

Consider, without loss of generality, the case x1 < x2. By assumption, f is a continuous
function on I, so it is a continuous function on [x1, x2] (or [x2, x1], if x2 < x1).

Hence, by the intermediate value theorem, for all c with y1 < c < y2 there exists an a ∈
[x1, x2] such that f(a) = c.

This implies that c ∈ J .
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