MTH5105 Differential and Integral Analysis 2012-2013

Solutions 4

1 Exercises for Feedback

1) Let the function $f:(0, \pi) \rightarrow \mathbb{R}$ be given by $x \mapsto \cos (x)$. What is $f((0, \pi))$?

Show that f is invertible and that the inverse $g=f^{-1}$ is differentiable. Find a formula for the derivative g^{\prime}.
Compute the Taylor polynomial $T_{1,0}$ for g (recall that $T_{1,0}$ denotes the degree-one Taylor polynomial at the point 0). What is the remainder term in the Lagrange form?
Hence show that for $x \in[0,1 / 2]$,

$$
|g(x)-\pi / 2+x| \leq \sqrt{3} / 18 \approx 0.096
$$

Solution:

The image $f((0, \pi))$ is the interval $(-1,1)$ (so $g=f^{-1}$ will be defined on this set).
As $f^{\prime}(x)=-\sin (x)<0$ for all $x \in(0, \pi), f$ is strictly decreasing and therefore invertible, with differentiable inverse $g:(-1,1) \rightarrow \mathbb{R}$. (Of course we recognize from Calculus that $g=\arccos$.)
To compute the derivative, we have $g^{\prime}(x)=\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}$, and note that $f^{\prime}(x)=$ $-\sin (x)=-\sqrt{1-\cos ^{2}(x)}$, therefore $g^{\prime}(x)=-1 / \sqrt{1-x^{2}}$.
We have $g(0)=\pi / 2$ and $g^{\prime}(0)=-1$, so that $T_{1,0}(x)=\pi / 2-x$.
From $g^{\prime \prime}(x)=-x\left(1-x^{2}\right)^{-3 / 2}$, the remainder term in the Lagrange form is given by

$$
R=\frac{1}{2} g^{\prime \prime}(c) x^{2}=-\frac{c x^{2}}{2\left(1-c^{2}\right)^{3 / 2}} .
$$

By Taylor's Theorem, there exists $c \in[0, x]$ such that $g(x)-T_{1,0}(x)=R$. For $x \leq 1 / 2$ we get the explicit estimate

$$
|g(x)-\pi / 2+x|=\left|g(x)-T_{1,0}(x)\right|=|R| \leq \frac{|x|^{3}}{2\left(1-x^{2}\right)^{3 / 2}} \leq \frac{(1 / 2)^{3}}{2(1-1 / 4)^{3 / 2}}=\frac{1}{6 \sqrt{3}}=\frac{\sqrt{3}}{18}
$$

2 Extra Exercises

2) Let $f(x)=\exp (1-\exp (x))=e^{1-e^{x}}$.
(a) Determine the Taylor polynomials $T_{1,0}, T_{2,0}$, and $T_{3,0}$, of degrees 1,2 , and 3 , respectively, for f at the point $a=0$.
(b) Prove that $f(x)>1-x$ for all $x>0$.

Solution: (a) Using the chain and product rules, we compute

$$
\begin{gathered}
f^{\prime}(x)=\left(-e^{x}\right) e^{1-e^{x}}=-e^{1+x-e^{x}} \\
f^{\prime \prime}(x)=-e^{1+x-e^{x}}\left(1-e^{x}\right) \\
f^{\prime \prime \prime}(x)=-e^{1+x-e^{x}}\left(-e^{x}\right)-e^{1+x-e^{x}}\left(1-e^{x}\right)^{2}
\end{gathered}
$$

Therefore

$$
\begin{gathered}
f(0)=e^{1-e^{0}}=e^{1-1}=e^{0}=1 \\
f^{\prime}(0)=-e^{1+0-1}=-1 \\
f^{\prime \prime}(0)=-e^{1+0-1}(1-1)=0 \\
f^{\prime \prime \prime}(0)=-e^{1+0-1}(-1)-e^{1+0-1}(1-1)^{2}=1
\end{gathered}
$$

Hence

$$
\begin{gathered}
T_{1,0}(x)=1-x \\
T_{2,0}(x)=1-x+0 x^{2}=1-x \\
T_{3,0}(x)=1-x+\frac{x^{3}}{6}
\end{gathered}
$$

(b) Let $x>0$. Taylor's Theorem tells us that $f(x)=T_{1,0}(x)+R_{1}$, where $R_{1}=\frac{f^{\prime \prime}(c)}{2} x^{2}$ for some $c \in(0, x)$. In particular $c>0$, so $e^{c}>1$, therefore $f^{\prime \prime}(c)=-e^{1+c-e^{c}}\left(1-e^{c}\right)>0$, hence $R_{1}>0$. Therefore $f(x)>T_{1,0}(x)=1-x$, as required.
3) In lectures we have shown that the number e can be expressed as

$$
e=\exp (1)=\sum_{k=0}^{\infty} \frac{1}{k!}
$$

Show that the remainder term r_{n} in

$$
n!e=n!\sum_{k=0}^{n} \frac{1}{k!}+r_{n}
$$

cannot be an integer. Hence deduce that e is irrational.

Solution:

We find

$$
r_{n}=\sum_{k=n+1}^{\infty} \frac{n!}{k!}
$$

We estimate each term as

$$
0<\frac{n!}{k!}=\frac{1}{(n+1)(n+2) \ldots k}<\frac{1}{(n+1)^{k-n}}
$$

so that

$$
0<r_{n}<\sum_{k=n+1}^{\infty} \frac{1}{(n+1)^{k-n}}=\sum_{l=1}^{\infty} \frac{1}{(n+1)^{l}}=\frac{1}{n}
$$

Hence

$$
0<r_{n}<\frac{1}{n}<1
$$

and r_{n} therefore cannot be an integer.
Since $\sum_{k=0}^{n} \frac{n!}{k!}$ is an integer, we have shown that for all $n \in \mathbb{N}, n!e$ cannot be an integer. It follows that e cannot be a rational number, since if $e=p / q$ were rational then $n!q / q p$ would have to be an integer for n sufficiently large.

