MTH5103 Complex Variables 2012-2013

Coursework 1

Please put your solution to the starred feedback exercise in the red Complex Variables box in the basement by 3 pm Friday 18 January. Remember to put your name (surname underlined) and student number on your solution and to staple the pages.

Exercise 1. Let $z_{1}=1+3 i$ and $z_{2}=2-2 i$. Express the following complex numbers in standard form, $x+i y$:
(a) $z_{1} z_{2}$
(b) $\frac{1}{z_{1}}$
(c) $\frac{z_{2}}{z_{1}}$
(d) $\frac{1}{z_{1}}+\frac{1}{z_{2}}$

Compute the moduli:
(e) $\left|z_{1}\right|$
(f) $\quad\left|z_{1} z_{2}\right|$
(g) $\left|\frac{z_{1} z_{2}}{z_{1}+z_{2}}\right|$

Exercise 2. Express the following complex numbers in polar form:
(a) -2
(b) i
(c) $1-i$
(d) $1+\sqrt{3} i$
(e) $1 /(1+i)^{2}$

Exercise* 3. Solve for the roots of the equation

$$
\left(z-\frac{i}{2}\right)^{3}+i=0
$$

Express all the roots in standard form, $x+i y$, and draw a diagram showing their location in the complex plane.

Exercise 4. Describe graphically the sets of points in the complex plane defined by the following equations and inequalities:
(a)

$$
\frac{3}{\bar{z}}=z
$$

(b)

$$
\operatorname{Im}\left(z^{3}\right)>0
$$

(c)

$$
|z|=\operatorname{Im}(z)+\frac{1}{2}
$$

Notation: Re and Im denote the real and imaginary parts of z, respectively.

