MTH5103 Complex Variables 2012-2013

Coursework 2

Please put your solution to the starred feedback exercise in the red Complex Variables box in the basement by 3 pm Friday 25 January. Remember to put your name (surname underlined) and student number on your solution and to staple the pages.

Exercise 1. Using Euler's formula, express in terms of $\sin \alpha$ and $\cos \alpha$ the following:
(a) $\sin 2 \alpha$ and $\cos 2 \alpha$;
(b) $\sin 3 \alpha$ and $\cos 3 \alpha$.

Exercise 2. (a) Find all complex solutions of the equation $e^{2 z}=-1$, by writing both sides in polar form.

Using the results from (a), determine all complex solutions of
(b) $\cosh z=0$,
(c) $\cos z=0$.

Exercise 3. Consider a Möbius transformation

$$
z \mapsto w=\frac{a z+b}{c z+d}
$$

Determine the constants a, b, c and $d($ all $\in \mathbb{C})$, such that the transformation maps $0 \rightarrow i,-i \rightarrow 1$, and $-1 \rightarrow 0$.

Exercise* 4. Consider the transformation

$$
z \mapsto w=z^{2}+z-3,
$$

where as usual $z=x+i y$ and $w=u+i v$.
(a) Under the transformation, what points in the z-plane are mapped to $v=c$ in the w-plane (for c a non-zero real constant)?
(b) Find the image of the line $\operatorname{Re}(z)=k$ (for k a real constant not equal to $-1 / 2$) under the transformation.
(c) Sketch your results from (a) and (b) for $c=1$ and $k=0$, respectively.

