MTH5103 Complex Variables 2012-2013

Coursework 3

Please put your solution to the *starred feedback exercise* in the red Complex Variables box in the basement by 3pm Friday 1 February. Remember to put your name (surname underlined) and student number on your solution and to staple the pages.

Exercise 1. Evaluate the following limits:

(a)
$$\lim_{z \to -i} \frac{z^4}{z^3 + i}$$
 (b) $\lim_{z \to \infty} \frac{(z - 2i)^2 (7z - 3)}{(1 - iz)^2 (1 + 5z)}$ (c) $\lim_{z \to i+1} \frac{z^5}{z^2 - 2i}$

Exercise 2. For each of the following functions decide at which values of z the function is continuous and at which values it is not continuous. Give reasons, but detailed proofs are not expected.

(a)
$$f(z) = 5z^4 + 7z^3 + 3\overline{z}$$
,

(b)
$$f(z) = (z - \overline{z})/(iz)$$
. Check the cases (i) $z \neq 0$, and (ii) $z = 0$, separately.

Exercise 3. Let

$$f(z) = \left(\frac{\overline{z}}{z}\right)^n$$

where $n \in \mathbb{N}$. By considering what happens when z approaches 0 along straight lines, show that $\lim_{z\to 0} f(z)$ does not exist.

- **Exercise* 4.** (a) Write down the definition of the derivative of a complex function as a limit.
 - (b) Using the definition of the derivative from (a), find the derivative of

$$f(z) = 4z^2 + \frac{i}{z}$$

at z = -i,

(c) Using the definition of the derivative from (a), find the derivative of

$$f(z) = z^{\alpha}$$

at $z = z_0$ for any positive integer α . Using the binomial theorem will simplify your calculation. [The formula obtained is true for any real α , although a more general form of the binomial theorem must then be used, involving an infinite series.]