MTH5103 Complex Variables 2012-2013

Coursework 3

Please put your solution to the starred feedback exercise in the red Complex Variables box in the basement by 3pm Friday 1 February. Remember to put your name (surname underlined) and student number on your solution and to staple the pages.

Exercise 1. Evaluate the following limits:
(a) $\quad \lim _{z \rightarrow-i} \frac{z^{4}}{z^{3}+i}$
(b) $\lim _{z \rightarrow \infty} \frac{(z-2 i)^{2}(7 z-3)}{(1-i z)^{2}(1+5 z)}$
(c) $\lim _{z \rightarrow i+1} \frac{z^{5}}{z^{2}-2 i}$

Exercise 2. For each of the following functions decide at which values of z the function is continuous and at which values it is not continuous. Give reasons, but detailed proofs are not expected.
(a) $f(z)=5 z^{4}+7 z^{3}+3 \bar{z}$,
(b) $f(z)=(z-\bar{z}) /(i z)$. Check the cases (i) $z \neq 0$, and (ii) $z=0$, separately.

Exercise 3. Let

$$
f(z)=\left(\frac{\bar{z}}{z}\right)^{n}
$$

where $n \in \mathbb{N}$. By considering what happens when z approaches 0 along straight lines, show that $\lim _{z \rightarrow 0} f(z)$ does not exist.

Exercise* 4. (a) Write down the definition of the derivative of a complex function as a limit.
(b) Using the definition of the derivative from (a), find the derivative of

$$
f(z)=4 z^{2}+\frac{i}{z}
$$

at $z=-i$,
(c) Using the definition of the derivative from (a), find the derivative of

$$
f(z)=z^{\alpha}
$$

at $z=z_{0}$ for any positive integer α. Using the binomial theorem will simplify your calculation. [The formula obtained is true for any real α, although a more general form of the binomial theorem must then be used, involving an infinite series.]

