MTH5103 Complex Variables 2012-2013

Coursework 4

Please put your solution to the starred feedback exercise in the red Complex Variables box in the basement by 3 pm Friday 8 February. Remember to put your name (surname underlined) and student number on your solution and to staple the pages.

Exercise* 1.

(a) Let $f(z)=u(x, y)+i v(x, y)$, where as usual $z=x+i y$. Write down the Cauchy-Riemann equations.
(b) Each of the following functions can be written as $f(z)=u(x, y)+i v(x, y)$. Find the set of all points (x, y) at which u and v satisfy the Cauchy-Riemann equations:
(i) $\quad f(z)=z(x z+1)+i x y(1-2 x)$
(ii) $\quad f(z)=x^{2}\left(\frac{1}{2}+i\right)+2 x+i(z-2 x y)$
(c) If u and v satisfy the Cauchy-Riemann equations at z_{0}, what extra conditions on u and v will ensure that $f=u+i v$ is differentiable at z_{0} ?

Exercise 2. Consider the complex function

$$
f(z)=i e^{-i z}
$$

(a) Express $f(z)$ in the form $u(x, y)+i v(x, y)$, give u and v.
(b) Use the Cauchy-Riemann equations and the existence and continuity of the partial derivatives of u and v to show that $f^{\prime}(z)$ exists for all z.
(c) Using your results from b), find an expression for $f^{\prime}(z)$ in terms of z.

Exercise 3.

(a) Prove the following result: An entire function $f: \mathbb{C} \rightarrow \mathbb{C}$ with $f(z) \in \mathbb{R}$ for all $z \in \mathbb{C}$ is necessarily a constant function. Using the Cauchy-Riemann equations will simplify the proof.
(b) Which of the following functions are entire? Give reasons.
(i) $f(z)=\sin |z|$,
(ii) $f(z)=z^{5}+i z^{7}+z^{12}$,
(iii) $f(z)=f(x+i y)=x$,
(iv) $f(z)=2$.

