James Lidsey
(Queen Mary / University of London)

Differential Equations (MTH4102) Problem Sheet 4

Problem 10

Determine the general solution of the following homogeneous linear differential equations. Fix for each solution the constant of integration according to the given initial condition.
a) $y^{\prime}=-x y, \quad y(0)=-2$
b) $y^{\prime}=x \cos (x) y, \quad y(0)=1$
c) $y^{\prime}=-y /(1+x), \quad y(0)=-1$
d) $y^{\prime}=y /\left(4-x^{2}\right), \quad y(0)=0$
e) $y^{\prime}=y /\left(x^{2}+2 x+2\right), \quad y(0)=2$

Problem 11

Determine the general solution of the following inhomogeneous linear differential equations. Fix for each solution the constant of integration according to the given initial condition.
a) $y^{\prime}=3 y+5, \quad y(0)=-2$
b) $y^{\prime}=-2 x y+2 x, \quad y(0)=1$
c) $y^{\prime}=3 x^{2} y /\left(1+x^{3}\right)+x^{2}+x^{5}, \quad y(0)=-1$
d) $y^{\prime}=y+2 x e^{2 x}, \quad y(0)=3$
e) $y^{\prime}=y \tan (x)+\cos (x), \quad y(0)=2$

Problem 12

Consider the differential equation

$$
y^{\prime}=y-x y^{3} .
$$

a) Use the substitution $z(x)=1 /(y(x))^{2}$ to rewrite the differential equation in terms of the new dependent variable z.
b) Solve the linear inhomogeneous differential equation for z and determine the general solution $y(x)$ of the original differential equation.

Problem D

a) Determine the general solution of the homogeneous linear differential equation

$$
y^{\prime}=\tan (x) y
$$

Fix the constant of integration according to the initial condition $y(\pi / 4)=-\sqrt{8}$ and sketch the solution in a diagram in the interval $0 \leq x \leq \pi / 2$.
b) Determine the general solution of the inhomogeneous linear differential equation

$$
y^{\prime}=\frac{x y}{1+x^{2}}+\sqrt{\frac{1+x^{2}}{1-x^{2}}}
$$

by the method of integrating factor.
c) Determine the general solution of the differential equation

$$
y^{\prime}=\frac{y}{2 x}-(x y)^{3} .
$$

Homework, and homework only, to be handed in during week 5 tutorials, Wed/Thurs 10/11 February.

