James Lidsey (Queen Mary / University of London)

Differential Equations (MTH4102) Problem Sheet 4

Problem 10

Determine the general solution of the following homogeneous linear differential equations. Fix for each solution the constant of integration according to the given initial condition.

a)
$$y' = -xy$$
, $y(0) = -2$
b) $y' = x\cos(x)y$, $y(0) = 1$
c) $y' = -y/(1+x)$, $y(0) = -1$
d) $y' = y/(4-x^2)$, $y(0) = 0$
e) $y' = y/(x^2 + 2x + 2)$, $y(0) = 2$

Problem 11

Determine the general solution of the following inhomogeneous linear differential equations. Fix for each solution the constant of integration according to the given initial condition.

a)
$$y' = 3y + 5$$
, $y(0) = -2$
b) $y' = -2xy + 2x$, $y(0) = 1$
c) $y' = 3x^2y/(1 + x^3) + x^2 + x^5$, $y(0) = -1$
d) $y' = y + 2xe^{2x}$, $y(0) = 3$
e) $y' = y \tan(x) + \cos(x)$, $y(0) = 2$

Problem 12

Consider the differential equation

$$y' = y - xy^3.$$

- a) Use the substitution $z(x) = 1/(y(x))^2$ to rewrite the differential equation in terms of the new dependent variable z.
- **b)** Solve the linear inhomogeneous differential equation for z and determine the general solution y(x) of the original differential equation.

For the homework please turn over

Problem D

a) Determine the general solution of the homogeneous linear differential equation

$$y' = \tan(x)y \,.$$

Fix the constant of integration according to the initial condition $y(\pi/4) = -\sqrt{8}$ and sketch the solution in a diagram in the interval $0 \le x \le \pi/2$.

b) Determine the general solution of the inhomogeneous linear differential equation

$$y' = \frac{xy}{1+x^2} + \sqrt{\frac{1+x^2}{1-x^2}}.$$

by the method of integrating factor.

c) Determine the general solution of the differential equation

$$y' = \frac{y}{2x} - (xy)^3.$$

Homework, and homework only, to be handed in during week 5 tutorials, Wed/Thurs 10/11 February.