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0 Revision

Let D C R. (Most commonly we take D to be either an interval, or all of R.)
Definition 0.1. Let f : D — R.

(a) f is continuous at a € D if

Ve>030 >0V eD, |z —a|<d:|f(x)— fla)] <e.

(b) f is continuous if f is continuous at all a € D.

(c) f(z) tends to the limit L € R as x tends to a € D, lim f(z) = L, if

Ve>036>0Ve eD, 0< |z —a|<d:|f(x)—L|<e.

Remark. We use the short-hand notation lim f(x) = f(a) to indicate that both
(a) lim f(z) = L exists and (b) f(a) = L.

Often it is helpful to consider ‘one-sided limits’.
Definition 0.2. Let f : D — R.
(a) (Left-hand limit) Given a € D and L € R, we write li;n flz) =L, if

Ve>030>0VeeD, 0<a—x<d:|f(z)—L|<e.

(b) (Right-hand limit) Given a € D and L € R, we write liin flz) =L, if

Ve>030>0VeeD, 0<z—a<d:|f(z)—Ll<e.

Remark. Clearly lim f(z) = L if and only if both li{ﬂ f(z) = L and li}n f(z)=L.

Theorem 0.3. Let f: D — R. f is continuous at a € D if and only if lim f(x) =
f(a).

Proof. Let f:D — R.

Lecture 1:
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“=" Let f be continuous at a € D. Then
Ve>030 >0Ve €D, |[x—a|<d:|f(x)— fla)] <e.
If we set L = f(a), then it follows that we can write
Ve>030>0VeeD, 0< |z —a|<d:|f(z)—L|<e.
But this implies lim f(z) = L, so lim f(z) = f(a) as needed.

“<" Let lim f(x) = f(a). Then
Ve>030 >0Ve eD, 0< |z —al <d:|f(x)— fla)|<e.
Additionally, for = = a, we have |f(a) — f(z)| = 0 < ¢, so that

Ve>030 >0V eD, |z —a|<d:|f(x)— fla)] <e.

This implies that f is continuous at a € D.

Remark. If f is continuous, we are allowed to “exchange” lim and f, i.e.
lim f(x) = f <lim w) .

In other words, it does not matter whether we evaluate the function first and then

take the limit or whether we first take the limit and then evaluate the function.

Theorem 0.4. If f : D — R is continuous at a € D and b = f(a) # 0 then f(x) #0
nearby, i.e.

A6 >0Vx €D, |z —al <d: f(x)#0.
Proof. Pick € = |b|. Since f is continuous at a, and b = f(a), by definition
>0V eD, 0<|z—al<d:|f(x)—bl<e.
Then, for such x, we have

b = & > [f(x) = b = [|f(2)] = [b]] = [b] — [ f ()]
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or, equivalently, |f(x)| > 0.

Therefore, by choosing ¢ as we did, we have shown

30 >0VeeD, |[x—a| <d: f(x)#0.

Reminder. Use the triangle inequality |z + y| < |z| + |y| (A) to show

[z =yl = [lz] = [yll -

Proof. We need to show both (a) |x — y| > |z| — |y| and (b) |z — y| > |y| — |z|.

(a) is equivalent to |z| < |z — y| + |y|, and
z[ = [(x —y) +yl < |z —yl+yl Dby (A).
(b) is equivalent to |y| < |x — y| + |z|, and

yl =y —2) + 2| <y — 2|+ |z[ by (A).



1 Differentiation
Lecture 2:

Let D C R be a set without isolated points (to allow limits at all points of D). 10/01/13
Definition 1.1. Let f : D — R.

(a) f is differentiable at a € D if the limit

o) -t L@ = 1)

Tr—a Tr— Qa

exists. The value f'(a) is the derivative of f at a.

(b) f is differentiable if f is differentiable at all a € D. The function f': D — R
given by x — f'(x) is the derivative of f.

Remark. Geometric interpretation: the difference quotient

f(b) — fla)
b—a

is the slope of the secant line through the points (a, f(a)) and (b, f(b)), and the limit
f'(a) is the slope of the tangent line at (a, f(a)) of the graph of f.

bfw)

tangent

/
\__ﬁﬂa,f(a))

X



Examples.

1) f:R — R, z — 22 is differentiable at every a € R:

We have
. 2 9
@) - @) _ -
T —a T —a
and
lim f(x) = f(a) = lim(x +a) = 2a,
r—a €T —a r—a
SO

f'(a)=2a forallaecR.

The derivative is [/ : R — R, x — 2.
2) Consider f: R — R, z — ||

(i) f is not differentiable at a = 0:

We have
f@) = 50) _Jel _ -1 2<0
v =0 v 1 x>0
Sotim 2 =SO) i 2O SO ppetore, tim L8 =S O)
z,/0 z—0 \,0 x—0 s r—0

does not exist.
(i) If @ # 0 then f is differentiable at a:

If a # 0 then x and a have the same sign when x is sufficiently close to a.

Thus, if a > 0,
i £@) = fla) el =lel o w—a
r—a r—a rx—a T — Q rT—a U — Q4
If a <0,
limM:limM:Iim_x+a:—1,
r—a €T — Q r—a T — Q r—a T — Q

In summary,

1 x>0

f'() = { undefined z =0

-1 rz<0.
\



1
r?sin— x #0
3) frR=R, z+— x is differentiable at a = 0:
0 x=0

This is unclear from the graph of f, as f “wobbles” near zero.

0.05 1

-0.05-

Plotting the derivative doesn’t help much, either:

y=f(x)

We claim that
1
f(0) =limzsin—=0.

x—0 x



To see this, note that for any € > 0 we may choose § = ¢, so that if 0 < |z| < ¢

then
f(z) — f(0)

—0| =
z—0 ‘

: 1
msm—’ = |z| sm—‘ <l|lz]<d=¢,
T T

1
as required (note we used that |sin —| <1 for all z # 0).
x



Lecture 3:

11/01/13

The following result gives us some properties about limits that we often use

implicitly /explicitly in proofs.

Theorem 1.2 (Algebra of limits at a point). Consider f : D — R and g: D — R
and some a € D. Suppose that lim f(x) = L and lim g(x) = M for some L, M € R.
Then the following conditions hold:

o lim(f(z)+g(x)) =L+ M;

r—a

e lim(f(x)g(x)) = LM;

r—a

o If M #0 then lim (L&) = L

z—a 9(T)

=l

Proof. Omitted. m

Lemma 1.3. f: D — R is differentiable at a if and only if there exist s,t € R and
r: D — R such that

(1) f(z) =s+t(x —a)+r(z)(x —a) for all z € D, and

(2) limr(x) = 0.

r—a
Remark. These properties say that f(z) can be approximated by a linear function

= s+ t(x — a) for x close to a.

Proof. “=" Let f be differentiable at a. We define r : D — R by
f(x) — f(a)

r(z) = r—a

0 Tr=a

—f'(a) z#a

For x # a it follows that

f(z) = fla) + f'(a)(z — a) + r(z)(z —a) .

For x = a, this identity holds as well, as it reduces to f(a) = f(a). Therefore
(1) holds with s = f(a) and t = f’(a). To show (2) we compute

limr(z) = f'(a) — f'(a) =0.

r—a



“<” Inserting = a into (1) gives f(a) = s, so that (1) gives

f(x) = f(a) +t(z —a) +r(z)(x - a),

and therefore

@) = @)
T—a
Now (2) implies that the limit
limM =t+limr(x)=t
r—a Tr— a r—a

exists, so f is differentiable (see Definition 1.1).

]

Remark. If f(z) = s+t(z—a)+r(z)(x—a) with lim r(x) = 0, then f is differentiable

at a with s = f(a) and t = f'(a). The equation of the tangent line to the graph of

(
f, at the point (a, f(a)), is therefore

y=[fla)+ f(a)(z—a).
Theorem 1.4. If f : D — R s differentiable at a € D then f is continuous at a.

Proof. By Lemma 1.3,
flx)=s+tx—a)+r(z)(x—a)

with limr(z) =0, s = f(a) and t = f’(a). Therefore lim f(z) = s = f(a), so f is

r—a r—a

continuous at a, by Theorem 0.3. O

Remark. f: R — R, z — |z| is continuous at 0 but not differentiable. The

converse of Theorem 1.4 is therefore not true.

Theorem 1.5. Let f,g : D — R be differentiable at a € D and let ¢ € R. Then
f+g,cf, fg, and f/g (if g(a) # 0) are differentiable at a. We have

(a) (f+9)=f+7,
(b) (cf) =cf’,

10



(c) (fg) = f'g+ fg (product rule), and
(d) (f/9) = (f'g9— fg')/g* (quotient rule).
Proof.  (a) Follows from the Algebra of limits. (Check it!)
(b) This is a special case of (c¢) with the constant function g(z) = c.

(c) We have

. (f(sc)g(as) - f(a)g(a)) . <Mg<x> + fa 2 = 9(@) ) |

r—a T — a r—a r—a Tr —a

As f and g are differentiable at a and g is continuous at a by Theorem 1.4,

we may apply the Algebra of limits (Theorem 1.2) to get:
(f9)'(a) = f'(a)g(a) + f(a)g'(a) .

(d) By Theorem 1.4, g is continuous at a. Now g(a) # 0, therefore by Theorem
0.4, g(x) # 0 nearby, i.e.

A >0VeeD, |[x—a|<d:g(x)#0.

Therefore f(z)/g(x) is defined near a, and

flz)  fla)
g(xi - 5(&) - g(m)lg(a) (f(xi - i(a)g(a) - f(a)—g(xi — z<a)> :

Using Theorem 1.2 we see that the limit as z — a exists on the right-hand-side,

and

(f) (@) = =1 (F(a)g(a) - Fla)g/(a) -
Example. Show that

(1)’__L’
i)

Here there are two possible solutions:

11



(a) Use the quotient rule with constant function 1 in numerator:

(1>'_L1'f'__i'
f) f? -

(b) Use the product rule with g = 1/f, so that 1 = fg, and differentiate this:

0=(f9) =19+ [d and therefore g =—2=—-

Remark. Often, the derivatives of ‘standard’ functions from Calculus will be as-
sumed as known (e.g. sin’ = cos, etc). If we wanted to, we could rigorously justify

each of these using Definition 1.1.

12



Lecture 4:
Theorem 1.6 (Chain Rule). let f : D — R be differentiable at a € D, and let 14/01/13

g : f(D) — R be differentiable at b = f(a). Then go f: D — R is differentiable at
a and

(go f)(a) =g (f(a)f (a).
Remark. To get an idea for the formula, let us write

gof(@)—gofla) gof(x)—gofla) flx)—[fla)
r—a f(x) = f(a) r—a

It looks like we can easily take the limit of x — a on the right-hand side. However,

the problem is that f(z) — f(a) might be zero for  # a, and we need to be more

careful because of this.
Proof. By Lemma 1.3 we have
(1) f(x) = f(a) + f'(a)(x — a) + r(z)(z — a), and

(2) g(y) =g(b) +g'(b)(y — b) + s(y)(y — b)

with lim 7(z) = 0 and lim s(y) = 0. Define s(b) = 0 so that s is continuous at b.

T—a y—b

Let y = f(x) to get
go f(x) —g(b) =(g'(b) + s(f(x))) (f(x) = b)
=(g'(b) + s(f(x))) (f'(a) + r(z)) (z — a)
=g (b)f'(a)(z — a) + t(z)(z — a) ,
where t(z) = s(f())f'(a) + ¢'(b)r(x) + s(f(2))r(z). Then

lim #(z) =lim (s(f(2))f"(a) + ¢'()r(x) + 5(f(z))r(z))

= lim 5(f(2))f'(a) + ¢'(b) lim r(2) + lim 5( (x)) lim r(x)

Now lim r(z) = 0, and also lim s(f(z)) = 0 (for the latter we crucially need that s

r—a r—a

is continuous at b), so that

limt(z) =0.

Thus, by Lemma 1.3, g o f is differentiable at a with (g o f)(a) = ¢'(b)f'(a) =
g'(f(a))f'(a). 0

13



2 The Mean Value Theorem

Theorem 2.1. If a function f : [a,b] — R has a mazimum (or minimum) at

c € (a,b) and is differentiable at c, then f'(c) = 0.

Proof. If f has a minimum at ¢ then —f has a maximum at ¢, so it suffices to
consider the case of f having a maximum at c¢. By assumption f is differentiable at

¢, SO

d=f(e) = lim 10 =70

z—c X —C
exists. Restricting to the one-sided limits, we have furthermore

d:hmM<0

z\C r—cC -

and
S T = (O

xz,/"c T —cC

Therefore d = 0. O

>0.

Theorem 2.2 (Rolle). Let f : [a,b] — R be continuous on |a,b] and differentiable
n (a,b). If f(a) = f(b) = 0 then there exists ¢ € (a,b) such that f'(c) = 0.

My —_—— e ——
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Proof. We consider three cases:
(1) f(z) =0 for all x € (a,b). Then f'(x) =0 for all x € (a,b).

(2) f(z) > 0 for some = € (a,b). Then f attains its maximum on [a,b] at some
¢ € [a,b] and f(c) > f(x) > 0. Now f(a) = f(b) =0, so f does not attain its
maximum at either a or b, so ¢ does not equal a or b, therefore f attains its

maximum at some ¢ € (a,b). By Theorem 2.1 it follows that f’(c) = 0.

(2) f(z) < 0 for some x € (a,b). Then f attains its minimum on [a,b] at some
c € la,b] and f(c) < f(x) < 0. As f(a) = f(b) =0, ¢ must be different from a
or b, so f attains its minimum at some ¢ € (a,b). By Theorem 2.1 it follows

that f'(c) = 0.
[

Theorem 2.3 (Mean Value Theorem). Let f : [a,b] — R be continuous on [a, b
and differentiable on (a,b). Then there exists ¢ € (a,b) such that

f(b) = fla)

R

-

r

15



Lecture 5:

Proof. The equation of the straight line through the points (a, f(a)) and (b, f(b)) is 17/01/13
b) —
S0 - 1@,

y=fla)+———
Taking the difference between y = f(x) and this equation, we define the auxiliary

function
_J() = f(a)
b—a

(r—a).

h(a) =0 and h(b) =0,

f(b) = f(a)

so the fact that A'(c) = 0 implies that f'(c) = , as required. O

b—a
Remark. Geometric interpretation: there exists a tangent to the graph of f which
is parallel to the secant line through (a, f(a)) and (b, f(b)).

We continue with some applications of the Mean Value Theorem.
Theorem 2.4. Let f : [a,b] — R be continuous on [a,b] and differentiable on (a,b).

(a) If f'(x) > 0 for all x € (a,b), then f is strictly increasing on [a,b], i.e. 1 < 3

implies f(x1) < f(x2).

(b) If f'(x) <0 for allx € (a,b), then f is strictly decreasing on [a,b], i.e. x1 < X9
implies f(xq1) > f(x2).
Proof. (a) Let z1,x9 € [a,b] with z1 < z5. Applying the Mean Value Theorem to

f on [z, 5], we have that there exists ¢ € (21, x2) with

f(xz2) — f(z1)

T2 — X7

Therefore f(z2) — f(z1) > 0.

= f'(c) >0.

(b) Replace f by —f and repeat.

16



3
x
Example. Find intervals on which f: R —- R, z 3 x is strictly increasing or

strictly decreasing.

1
¥ "3 y=fx)
2l -1 o\ 1 2
X
—0.5‘_
_1]

As f'(z) = 2> — 1, f'(z) < 0on (—=1,1) and f'(x) > 0 on (—o0,—1) U (1,00).
Therefore f is strictly decreasing on [—1, 1] and strictly increasing on (—oo, —1] and

1, 00).

Theorem 2.5. Let f : [a,b] — R be continuous on [a,b] and differentiable on (a,b).
If f'(x) =0 for all x € (a,b), then f is constant on [a,b], i.e. f(x) = f(a) for all
x € [a,b].

Proof. Let x € (a,b] and apply the Mean Value Theorem to f on [a, x]: there exists

M = f'(c) = 0. Therefore f(z) = f(a). O

a ¢ € (a,x) such that
—a

We conclude this section with presenting an Intermediate Value Theorem for
differentiable functions. First recall the Intermediate Value Theorem for continuous

functions.

Theorem (Intermediate Value Theorem). Let f : [a,b] — R be continuous and

f(a) < s < f(b). Then there exists ¢ € (a,b) such that f(c) = s.

The following theorem looks very similar.

17



Theorem 2.6. Let f : [a,b] — R be differentiable and f'(a) < s < f'(b). Then

there ezists ¢ € (a,b) such that f'(c) = s.
Lecture 6:

Remark. This shows that the derivative of differentiable functions satisfies the 18/01/13
intermediate value property. Note that the derivative doesn’t have to be continuous,

so this is different from the Intermediate Value Theorem for continuous functions.

Proof. Consider the case s = 0 first; that is, we will show that if f'(a) < 0 < f'(b),
then there exists ¢ € (a,b) such that f'(c) = 0:

f(b)>0

I

Since f is differentiable on [a,b], it is certainly continuous on [a,b] (see Theorem
1.4), and therefore attains its minimum on [a,b] (by a result in Convergence &
Continuity).

Now f’(a) < 0, so there exists @’ > a such that

fld') — f(a)

a —a

< 0.

(To see this, note that the definition f'(a) = lim,_, % implies there exists § >
0 such that if @’ € [a,b] with 0 < |a’ — a| < 0 then W — fl(a)] < —f'(a)/2.)
In particular, f(a’) < f(a).

Similarly, the fact that f’(b) > 0 means there exists ¥ < b with %bf,(b/) > 0, and
hence f(b') < f(b).

18



So f(a') < f(a) and f(b') < f(b), therefore the minimum of the function f : [a,b] —
R cannot be attained at either of the endpoints a or b. Therefore the minimum of
f :[a,b] — R must be attained at some point ¢ € (a,b). But f is differentiable at
€ (a,b), so f'(¢) = 0 by Theorem 2.1. This concludes the proof for the case s = 0.
Now consider the general case of s # 0; that is, we assume that f'(a) < s < f'(b),
and will show there exists ¢ € (a,b) such that f'(c) = s.
We can reduce this general case to the case s = 0 by considering the function
g : la,b] — R defined by g(x) = f(x) — sx. Clearly g is differentiable on [a, b], and
g (x) = f'(x) — s, 0 ¢g'(a) = f'(a) —s < 0 and ¢'(b) = f'(b) —s > 0. Therefore,
g'(c) = 0 for some ¢ € (a,b), and hence f'(c) = s.
[

Remark. In view of the Remark prior to the proof of Theorem 2.6, we may ask:
what sort of function is differentiable everywhere yet does not have continuous
derivative? One example is the function f from Example 3 in Chapter 1:

1
r’sin— x #0
x

fTR->Rz— :
0 x=0
We saw that f is differentiable at 0, with f’(0) = 0, and for z # 0 we can

calculate the derivative to be

1
f'(z) = 2xsin — —cos—.

So f is differentiable everywhere, but lim,_. f'(z) does not exist (as suggested by
the graph of f’ on page 7), so we cannot say that lim, .o f'(x) = f'(0), therefore f’

is not continuous at the point 0.

19



3 The Exponential Function

Definition 3.1. A differentiable function f : R — R with (a) f'(z) = f(x) for all
x €R, and (b) f(0) =1 is called an exponential function.

[e%e] n

Remark. We will show later that the formula f(z) = ) I—' satisfies the above
n

n=0 7t
definition. For now, we shall assume the existence of such a function.

In items (A) to (J) we shall collect properties of an exponential function (note

that items (I) and (J) appear in Chapter 5).
(A) f(x)f(=2) =1
Proof. Differentiate h(x) = f(x)f(—x): Using the chain and product rules we have
W(x) = f'(z)f(=x) + f(2) [ (-2)(=1) = 0.
Thus, by Theorem 2.5, h is constant and h(0) = f(0)f(0) =1, so h(z) = 1. O
(B) f(z) #0 for all x € R.
Proof. If f(x) =0 for some x € R then 0 = f(x)f(—x) = 1, a contradiction. O

(C) Let g : R — R be differentiable and ¢’ = g. Then there exists some ¢ € R such
that g = cf.

Proof. Consider h(x) = g(z)/f(x). By (B), the function h is defined on the whole
of R. The quotient rule implies that A is differentiable with

W) = L@@ = 9@ @) _ g)f() — o)) _

f(z)? fx)?
Therefore, by Theorem 2.5, h is constant, h(z) = ¢, and hence g(x) = cf(z). ]

(D) Definition 3.1 determines f uniquely.

Proof. Assume ¢ satisfies Definition 3.1, i.e. that ¢ = g and ¢(0) = 1. Then (C)
implies that ¢ = ¢f for some ¢ € R, and ¢(0) = 1 = f(0) implies that ¢ = 1, so
g=1I O

20



Now that we have shown uniqueness (property (D)), we will write f(z) = exp(x)

for the function f defined by Definition 3.1.

Theorem 3.2. For all a,b € R, exp(a + b) = exp(a) exp(d).

Proof. Consider the function g : R — R defined by ¢g(z) = exp(a + z) for all z € R.
Then ¢'(x) = exp(a + z) = g(x), so exp(a + z) = cexp(z) for some ¢ € R (by (C)).
Letting x = 0, we find exp(a) = ¢, so that exp(a+b) = cexp(b) = exp(a) exp(b). O

n

Corollary. For a € R and n € N, exp(na) = (exp(a))™.

Proof. We use mathematical induction on n: For n = 1, we have

exp(la) = exp(a) = (exp(a))’ -

Next, assuming that we have shown that exp(na) = (exp(a))” for some n € N, we

deduce that

exp((n + 1)a) = exp(na + a) = exp(na) exp(a) = (exp(a))” exp(a) = (exp(a))" ™ .

(E) exp(z) > 0 for all z € R.

Proof. The function exp is differentiable, therefore continuous. By (B), exp(z) # 0
for all z € R, and exp(0) =1 > 0. Assume now that (E) is false, i.e. there exists an
x € R for which exp(z) < 0. By the Intermediate Value Theorem (from Convergence
& Continuity) it follows that there exists ¢ € R such that exp(c) = 0, contradicting
property (B). ]

(F) exp is strictly increasing.

Proof. exp'(z) = exp(z) > 0, and the claim follows from Theorem 2.4. O

Theorem 3.3. For all z € R, exp(z) > z.

21
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Proof. 1f x < 0 then by (E) we have exp(z) > 0 > z, as required.

If x =0 then exp(x) =1 > 0 = z, as required.

If £ > 0 then by the Mean Value Theorem (Theorem 2.3) applied to [0, z], there
exists ¢ € (0,x) such that

exp(z) — exp(0)
r—0

= exp(c) .
Moreover, by (F) we know exp(c) > exp(0) = 1 by (F), therefore
exp(z) — 1 =xzexp(c) > x,
and thus exp(z) > x 4+ 1 > x, as required. O
(G) exp(R) =R* (={z € R: x> 0}).

Proof. First note that (E) implies exp(R) C R*. We therefore only need to show
that RT C exp(R), i.e. that

Ve > 03z € R, exp(z) =c.

Case 1: ¢ = 1.

This case follows since exp(0) = 1.

Case 2: ¢ > 1.

We have exp(0) = 1 < ¢ < exp(c), by Theorem 3.3. By the Intermediate Value
Theorem applied to [0, ¢], there exists z € (0, c) such that exp(x) = c.

Case 3: 0 <c< 1.

Now 1/¢ > 1 and as in Case 2 we can deduce that there exists an x € (0,1/c)
such that exp(z) = 1/c. By (A) we know that exp(z)exp(—z) = 1, therefore
exp(—z) = c. O
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Lecture 8:

Before we prove the next property of the exponential function we need to recall 01/
24/01/13

some things from Convergence and Continuity.

Definition 3.4 (Convergence of a sequence). Let (a,)5°, be a sequence of real

numbers and let a € R. We say that (a,), converges to a if

Ve >0, AN € N such that if n > N then |a, — a| < €.

In this case we write lim a, = a.

n—oo

Also, recall the following two results from Convergence and Continuity.

Theorem 3.5. Let a,c,d € R and suppose (a,)>2, is a sequence of real numbers

such that lim a, = a.

n—oo

e Ifa, > c foralln € N then a > c.
e Ifa, <d for alln € N then a < d.

Theorem 3.6. If (a,)?2, is an increasing sequence which is bounded above then
(@), converges to some real number. Similarly, if (a,)2, is a decreasing sequence

which is bounded below then (a,)Se, converges to some real number.

We are now ready to prove the following crucial property of the exponential

function.

1 n
(H) exp(1) = e, where e := lim (1 + —) :
n

n—oo

Proof. Recall the Bernoulli inequality: (1 +2)" > 1+ nz for all z > —1 and for all

n e No.
: "
1) Show that lim <1+—> exists:
n—oo n

n

I : :
(a) a, = [ 1+ — | is an increasing sequence:
n

A calculation gives




from which it follows that
=1+ =) =(1-=) (1
w=(1e3) = (=) (1+25)
> (1 1 1+ 1 1+ 1 nil— 1+ 1 nil—
- n n—1 n—1 N n—1 = On-t

n

1 1
where we have used the estimate (1 -= ] 2z 1 — — which follows from

n n
the Bernoulli inequality, as well as the calculation (1 — 2)(1 4 -15) = 1.

1 n+1
(b) b, = (1 + —) is a decreasing sequence:
n
From the Bernoulli inequality it follows that

L LS PR P
n2—1, — n2—17= n’

Therefore
1\" 1
n n
< l—i-l ' 1+ 1 "_ 1+ 1 n—b
- n n2—1,) n—1) b

(c) Note that 4 = b, > b, > a, for all n € N by (b). Thus, Theorem 3.6

implies that lim a, exists. Similarly, 2 = a; < a, < b, for all n € N by

n—oo

(a). So Theorem 3.6 implies that lim b, exists.

n—oo

Moreover,

1 1
lim b, = lim (an (1—|— —)) = <lim an> (lim (1+—)) = lim a,, .

2) Show that, for all n € N,

1 n 1 n+1
an:(l—i——) Sexp(l)ﬁ(l—k—) =b, :
n n

Consider any n € N. The Mean Value Theorem for exp on [0,1/n] implies
that there exists ¢ € (0,1/n) such that

exp(1/n) — exp(0)
1/n—0

= exp(c),
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so that exp(1/n) = 1 + exp(c)/n. As 1 < exp(c) < exp(1/n) (since exp is
strictly increasing by property (F)), we deduce that

1 1 1 1
1+ —<exp|— ) <1+ —exp|— | .
n n n n
This implies firstly that

(11)" < (o () - et

by the Corollary to Theorem 3.2 (setting a = 1/n).

Secondly, (1 —1/n)exp(1l/n) < 1, so that exp(1/n) < n/(n —1) for n > 2.
Replacing n by n + 1, we deduce that exp(1/(n+1)) < (n+1)/n =1+ 1/n,

(102" (o (1)) - i)

again using the Corollary to Theorem 3.2.

so that

Having now established the inequality

1 n 1 n+1
an=(1+—) SeXp(1)§(1+—) b,
n n

we may apply Theorem 3.5 to get

1\" 1\"
lim a, = lim (1 + —> <exp(l) < lim b, = lim a, = lim (1 + —) )
n n

n—oo n—oo n—0o0 n—oo n—oo
So it follows that

n—oo

1 n
exp(l) = lim (1 + ﬁ) =e,

as required. O
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Lecture 9:

Corollary. exp(n) = e" forn € Z. 25/01/13

Proof. 1f n € N then exp(n) = (exp(1))™ = €", using property (H) and the Corollary
to Theorem 3.2.
If n =0 then exp(0) = 1 = €°, using Definition 3.1.

If —n € N then combining the above with property (A) gives

exp(n) =1/exp(—n) =1/e " =¢€".

We also have (exp(n/m))™ = exp(n) = €", so that exp(n/m) = e*/™. Sum-

marising, we have proved the following result.

Theorem 3.7. (1) exp is strictly increasing,
(2) exp(R) = R*, and

(3) exp(z) = e* for all x € Q.
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4 Inverse Functions

Definition 4.1. Let f : D — R, and let £ = f(D) be the image of f. Then f is
wnvertible if there exists g : £ — R such that

go f(z) =z for allz € D and foglx)=x foralzef.
The function g is called an inverse of f.

Properties of the inverse:
1) The inverse is uniquely defined.

Proof. Let £ = f(D) and ¢1,92 : € — R be inverses of f. Let y € £. There exists
an € D with y = f(x) and

gi(y) =g10 f(x) =2 =go0 f(z) = g2(y) ,
S0 g1 = ga. L
As the inverse is uniquely defined, we can write g = f~1.
2) If f is invertible, then f~! is invertible as well, and (f~1)~! = f.

3) The graphs of f and f~! are mirror images with respect to the straight line

Y= .

Proof. Graph(f) = {(z, f(x)) : # € D} and Graph(f~") = {(y, /7'(y)) : y € £} =
{(f(x),f o f(x)):2eD}={(f(x),z): x € D} is its mirror image. O

27



Example.

f Ry =R f(x) =a? f(RY) =R]
fURE =R f ) =V fHRy) =Ry
2‘_ ) o
v
y=x /
| V'
1.5 P
1 / *__,.»-""
ra gt
o -
r I 7 y=vx
ﬁf-/ /
| ',/’f///
0.5 o 4
1 / V4
LA
I/ »
£ 7
0 (Ea! T LI T 1
0 0.5 1 1.5 2
X

Theorem 4.2. f: D — R is invertible if and only if it is injective (one-to-one).

Proof. “=" Let f be invertible. Suppose z1, x5 € D are such that f(x;) = f(z2).
Then x; = f~'o f(x1) = f~' o f(x3) = 9. Therefore f is injective.

“<” Let f be injective and let £ = f(D). Then for each y € £ there is a unique
x € D such that y = f(z); let g(y) = . This defines a function g : £ — R.
Then

go f(x)=g(y)=2x VreDand

fogly)=flx)=y Vye&.

So g is the inverse of f. O
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Corollary. If f : D — R is strictly increasing (or decreasing) then f is invertible.

Proof. Suppose f is strictly increasing. If z; # 25 then either z; < x5, in which
case f(x1) < f(z2), or &y < x1, in which case f(x3) < f(z1); in either case we have
f(z1) # f(xg), so f is injective.

The proof for f strictly decreasing is very similar: if x1 # x5 then either z; < x5,
in which case f(x1) > f(z2), or 3 < x1, in which case f(x2) > f(z1); in either case

we have f(x1) # f(x2), so f is injective. O

Example. exp : R — R is strictly increasing, therefore invertible.

27 X //
=k
s
//
y 1 77 y=In(x)
Ve
e >
// /
2 -1 A 2
/7 / %
s/
A
/
% /
7 !
/ f
/ /
s _nli
exp(R) = R exp ' =log: R" - R.

Let I be an interval (i.e. it has the property that if a,b € I then a < ¢ < b =
c € I). Note that if f: I — R is continuous then its image f(/) is an interval, by

the Intermediate Value Theorem.

Theorem 4.3. Suppose a < b. Let f : [a,b] — R be continuous and injective. Then
either f attains its minimum at a and its mazimum at b, or it attains its minimum

at b and its maximum at a.

29
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Proof. Injectivity of f means that f(a) # f(b). Without loss of generality, suppose
f(a) < f(b). In this case we aim to show that f attains its minimum at a and its
maximum at b.

Now f is continuous, so we know f attains its maximum at some ¢ € [a,b] (by

a result from Convergence & Continuity), and clearly ¢ cannot equal a (because

fla) < f(b)).

===

I
I
et
I
I
I
I
I
I
I
I
I
I
I
I
I
¢

Qﬂ—————————————
o e e e e e — — — — ————

X

We wish to show that ¢ = b. If this is not the case, i.e. if ¢ < b, then f(a) <
f(b) < f(c) and by the Intermediate Value Theorem there exists some d € (a,c)
such that f(d) = f(b). But d < ¢ < b implies d # b, contradicting the injectivity of
f. Thus ¢ = b, and f attains its maximum at b, as required. An analogous argument

shows that f attains its minimum at a. O]

Theorem 4.4. Let I be an interval and f : I — R be continuous and injective.

Then f is either strictly increasing or strictly decreasing.

Proof. (1) First consider the case of a closed bounded interval I = [a,b] and assume
without loss of generality that f(a) < f(b). We then wish to show that f is strictly
increasing. Let x,y € I with z < y. Then, by Theorem 4.3, f attains its maximum

at b, and therefore f(z) < f(b). Restricted to the interval [z,b], the minimum of
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f is attained at x, and thus f(z) < f(y). But equality f(z) = f(y) is impossible,
because f is injective, so in fact f(z) < f(y); in other words, f is strictly increasing.
(2) Consider now an arbitrary interval I.

Fix any u,v € I with u < v, and assume without loss of generality that f(u) <
f(v). We then wish to prove that f is strictly increasing. To show this, consider
any =,y € I with x < y. Now choose a closed interval [a,b] C I which contains
each of x, y,u,v. We know that f is strictly increasing or strictly decreasing on [a, b]
by (1). However, it cannot be strictly decreasing, because f(u) < f(v) and u < v,
therefore it must be strictly increasing on [a,b]. Therefore f(z) < f(y). It follows

that f: I — R is strictly increasing. O]
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Examples.

T z € (0,1]
1) f:(0,2) = R, f(z) = :
3—x ze€(l,2)

1.5

0.5

Here f is injective, but is neither strictly increasing nor strictly decreasing (it

is not continuous).

T z e (0,1)
2) £1(0,1)U(1,2) >R, f(x) = .
3—x z€(l,2)

1.5

0.5

Here f is injective and continuous, but neither strictly increasing nor strictly

decreasing ((0,1) U (1,2) is not an interval).
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Lecture 11:
Theorem 4.5. Let I be an interval and f : I — R be continuous and injective. 31/01/13

Then f=': f(I) — R is continuous.

Proof. Theorem 4.4 inplies that f is strictly increasing or decreasing. Consider the
case of strictly increasing f (the proof in the case of strictly decreasing f is similar).
We need to show that f~! is continuous at all b € f(I). Let us write b = f(a) for
some a € [.

Fix ¢ > 0. We wish to show there exists § > 0 such that if |y — b| < J then
I y) — fFH0)] < e Ify = f(x) € f(I) satisfies f(a —€) < y < f(a + €) then

a—¢e <x<a+e, because f is strictly increasing.

Choose now

:=min{f(a+¢)—b,b— fla—e)} >0.

Then |y —b| < § implies |z —a| < g, ie. |[f~1(y) — f~1(b)| < e. So f~! is continuous

at b, as required. O
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Theorem 4.6. Let I be an interval and f : I — R be continuous and injective. Let

f be differentiable at a € I and write b = f(a).
(a) If f'(a) = 0 then f~1 is not differentiable at b.

(b) If f'(a) # 0 then f~! is differentiable at b and

NIV S 1
R R VIO

Proof. (a) Let f'(a) =0 and assume f~! is differentiable at b = f(a). Then using

the chain rule to differentiate the equation x = f~!(f(x)) gives a contradiction:
L= (f)(f()f'(a)=0.

(b) Let f'(a) # 0. Define the difference quotient
[~ y) = f7H(0)
A =
(v) —
We need to show that (f~1)(b) = lirrll7 A(y) exists. Define now
y—)

fory #0b.

f(z) — f(a)

T #a,
B(z) = r—a
f(a) r=a.
Note that lim B(z) = f'(a) = B(a), so B is continuous at a, and therefore

Tr—a

continuous on I.

The function f~! is continuous on f(I), by Theorem 4.5, and so B o f~! is

also continuous on f(I). We compute

y—>
b.
Bof iy = W) = f(0b) V7
f'(a) y=>b.
Therefore Bo f~!(y) = 1/A(y) for y # b, and this function is continuous, so
1 - /
i{{%m_Bof (b)) = f'(a)
so (f71)(b) =lim,_; A(y) = 1/(lim,_, 1/A(y)) exists and equals 1/f(a).
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Examples.

1)

Consider f : R — R, x — 3. The function f is differentiable, and f’(z) = 3.
Moreover, f(R) =R (and f is continuous by Theorem 1.4).

Note that f' > 0 on (—o0,0) and on (0,00), so by Theorem 2.4 f is strictly

increasing on both (—oo, 0] and [0, 00), hence on all of R.

By the corollary to Theorem 4.2, f is invertible. (The inverse f~!: R — R is
given by z — x/3).

From Theorem 4.5 it follows that f~! is continuous.

From Theorem 4.6 it follows that f~! is not differentiable at x = 0, but is
differentiable at all x # 0 with derivative

s B 1 B 1 B 1
V=50 T swrp T

Consider f: R — R, x — exp(z). Note that f(R) = R, f is differentiable,
and f'(z) = exp(z) > 0 for all z € R.

Therefore Theorem 4.6 implies f~! : R™ — R, z — log(z) is differentiable,

and

—1y/ _ 1 — l
U) = o) ~ 7
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General powers, exponentials, and logarithms

For a € R and b € RT, we define

b* = exp(alog(b)) .
In particular, setting b = e = lim,, ... (1 + £)", we have

e” = exp(xlog(e)) = exp(zlog(exp(1))) = exp(xl) = exp(x)

for all € R (compare to Theorem 3.7 (c), where we showed this for x € Q).
We have % = exp(alog(z)) for a € R and x € RT, and differentiating using the

chain rule (and Example 2 above) gives

(%) = exp(alog(x))g =ax"'.

We have b* = exp(xlog(b)) for b € R and x € R, and differentiating using the

chain rule gives
(b") = exp(zlog (b)) log(b) = log(b)b" .
For a € RT and b € R* \ {1} we define log,, logarithm to base b, by

log(a)
lOgb(a) = log(b) :

1
Considering the function log, : Rt — R, = +— %7 we find that for z € RT
0g

ploer@) — exp (log(b) 112?(?))) = exp(log(z)) =«

and that for x € R

log, (b¥) = 10g1<b> log(exp(log(b)z)) = @ log(b)z = =

so that log, is the inverse of the function x — b".

36
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Example.
The function f : RT — R, 2 — 27 is differentiable, and applying the chain and

product rules we have
f'(x) = (%) = (exp(xlog(x)))" = exp(xlogx) <log(a:) + g) = (1+logz)z” .

1.57

\

0.51

| pr—— — — — — —

0 e 0.5 1 1.5

37



5 Higher Order Derivatives

Theorem 5.1 (Second Mean Value Theorem). Let f,g : [a,b] — R be continuous
on [a,b] and differentiable on (a,b). Then there exists ¢ € (a,b) such that

g ()(f(b) = f(a)) = f'(c)(g(b) — g(a)) -

Proof. Consider the auxiliary function h : [a,b] — R given by

W) = f(x)(g9(b) = g(a)) = g(x)(f(b) = f(a)) .

h is continuous on [a,b] and differentiable on (a,b). By the Mean Value Theorem
there exists ¢ € (a,b) such that

h(b) — h(a)

i(e) = b—a

and inserting the definition of h, we find

F'(©)(g(b) = g(a)) = g'(c)(f(b) — f(a))

—_

Remark. For g(z) = z, this reduces to the Mean Value Theorem.
If the derivative of a function f : D — R is again differentiable, we can consider

the second derivative f” = (f). We generalise this to higher order derivatives.

Definition 5.2. Let f : D — R be n times differentiable at a € D for some n € Ny.
We call f™ the n-th derivative of f. It is given by

FO®a) = f(a) and V(@) = (FP)(a) for0<k<n.

We say a function is n times continuously differentiable at a € D if f™ is continuous

at a.

Remark. Conventionally, n-th derivatives are denoted by repeating dashes, i.e.

T I S O I (S I U

but this becomes cumbersome for large n.
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Example. For n € N, let f: R — R,  — |z|z". We claim that f is precisely n

times differentiable (i.e. it is n times differentiable, but not n+1 times differentiable).

(a)

We first claim that
fl(x) = (n+1)|z|z" .

To prove this, consider three cases:
r>0: f(z)=2"", so f'(x) = (n+ 1)2"

r<0: f(z)=—2"" so f'(z) = —(n+1)a"

x—0 xr — 0 z—0 7T

Secondly, we claim that if 0 < k < n then

= lim |z|z"~
z—0

f¥ () = (1:[(71 +1-— z)) ||z "

1=0

To prove this we use mathematical induction in k:

First we check the statement is true for £ = 0:

fO) = (ﬁm t1- z'>> jala”™ = |ala" .

=0

Next we show that if the statement is true for k(< n), then it is also true for

k+ 1:
k—1

fED @) = (f9Y (@) = | [T +1—=4) | (zlemY

k—1

1=0
k

=0

where we used part (a) to deduce the second equality.

So f(k) exists for all 0 < k < n; in other words, f is n times differentiable.

n—1

Now f(z) = <H (n+1-— z)) |z|, and  +— |z| is not differentiable, so £

=0

is not differentiable; therefore f is not n + 1 times differentiable.
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Theorem 5.3 (Taylor’'s Theorem). Let n > 0 be an integer. Let f : [a,z] — R be
n times continuously differentiable (i.e. f™ exists and is continuous) on [a,z] and

(n+ 1) times differentiable on (a,x). Then there exists ¢ € (a,x) such that

f'(a f"(a f"(a) w o f(e nt1

(r—a)’+.. .+ CE

fz) = fla)+

(x—a)+

Remark. A similar statement holds for < a (replace |a, x] by [z, a] and (a,z) by

(x,a)).

Remark. When n = 0, Taylor’s Theorem becomes precisely the Mean Value The-

Proof. Let
£ =)+ L0+ T o f(:!(t)(x—t)”
nfk)

Then F' is continuous on [a, z] and differentiable on (a,z), and the product rule for

differentiation gives:

n (k+1) n (k)
F/<t) — f o (t) (.Ti—t)k— (}i _(i;'(x_t)kl
k=0 ' k=1
FO ()

Now define g : [a,z] — R by g(t) = (z — t)"**. Applying the Second Mean Value
Theorem (Theorem 5.1) to F' and ¢ on [a, ] shows that there exists ¢ € (a,x) such
that

As F(x) = f(z) and g(z) = 0, we find that
(n+1)(,
P00 (o (0 (@ — a)™) = —(n + 1) — O (f(x) — F(a)) |

n!

which becomes

£

(=)™ = (n+ 1)(f(z) - F(a)),
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so that

f(n+1)<c) -
f(a;):F(a)—i-m(x—a) .
But from the definition of I’ we see that
"(a "(a ™) (4
P = f0)+ 20—y Ty T8 gy
/' T L 10 PR LI
1) = s+ a0+ B o e e

as required.

Remark. We call

) (g
7@ =3 D oy

k
k=0
the n-th degree Taylor polynomial of f at a and

_ ()
" (n+ 1)

(z —a)" ™

the Lagrange form of the remainder term. The equation

f(@) =Tha(x) + Ry

is also called Taylor’s formula, and

®) (g )
Zf k:'( )(x_“)

k

e
=0

is called the Taylor series of f at a (whenever f(*)(a) exists for all k > 0).
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Examples.

1)

Estimate e = exp(1) using Taylor’s formula:

For f(z) = exp(x), we have f¥)(z) = exp(x) for all k£ > 0, and thus for any
n >0,

Toolw) = Z exiv Z Ll

and

Taylor’s Theorem applied to f = exp on [0, 1] says that there exists ¢ € (0,1)
such that

B exp(c
e =exp(1l Zk' n+1

Recall that in Chapter 3 we showed that exp(1) < (141/m)™"! for all m € N.
So exp(c) < exp(1) < (1+1/1)? = 4, and thus

"1 "1
ZH<€<ZH+
k=0 k=0

Evaluating this chain of inequalities for n = 11 gives the bounds

2.718281826 < e < 2.718281901 .

Moreover, as

1 - 4
6 —_— —

<kl (n+1)! ’
for all n, we see that

=Y i

k=0
oo ok

Show that exp(z) = Z — for all z € R:

k!

=0

Taylor’s Theorem applied to f = exp on [0, z] for z > 0, or on [z, 0] for z < 0,
says that there exists ¢ € R with |¢| < |z| such that

exp(c) n—+1
T
(n+1)!

lexp(z) = Too(2)] = |Bn| =

42

Lecture 14:
7/02/13



n

x
Now lim — = 0 (see Convergence & Continuity), so R, — 0 as n — oo.
n—oo 7.
0o ok

Thus, exp(z) = > =
=0 k!

1
(z—1)Ffor 1l <z <2

< (~1)-
3) Show that log(z) = >
k=1

k
For f(z) = log(x), we have f'(z) = 1/, f'(z) = —1/a% f"(x) = 2/a"
f@(z) = —6/2*, .... From this we conjecture that for k > 1
Rk — 1)
f(k)(.iﬁ):< ) x;g ) .

holds and prove this via mathematical induction (this is a standard argument

which we omit here). Now choose a = 1 and use Taylor’s Theorem to get

i) no(_ 1)kl
) = 3 e -1t = S 1y
k=0 ’

k=1

and

_ m(m — )t = [ <x_ 1)n+1 .

T (n+ 1) n+1 c
Taylor’s Theorem applied to f = log on [1,z] for 1 < z < 2 says that there
exists ¢ € (1,z) C (1,2) such that

1L (—1)k! Wl B 1 |z -1
og(e) = 35— = 1| = oste) ~ T (o) = Il < 5 |5
—1
NowlO<zx—1<landl<ec<z <2, sothat a: < 1. Therefore R,, — 0
c
k—1

as n — oo. In other words, log(z) = > 1, %(m —1DFfor 1 <z <2, as

required.

(It can be shown that this result holds not only for 1 < z < 2but for 0 < z < 2,

or, equivalently, for |z — 1| < 1.)

We return now to our discussion of the exponential function.

00 pm
(1) exp(a) = 3 2.
n=0 T
Proof. From Example 2) above. O
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(J) lim z™exp(—z) =0 for all n € Ny.
xn—i—l
Proof. From (I) it follows that exp(z) > ——— for > 0 and n € Ny. Therefore
(n+1)!
n !
!
0 < z"exp(—x) < (n+1) :
x

and, taking the limit as x — o0,

=0.

1!
0 < lim 2" exp(—z) < lim (n+1)

T—00 T—00 €T

Theorem 5.4. Let f : R — R be given by

Fa) = exp(—1/z) >0,
0 x<0.
Then for all k > 0,
f(k)(x) _ Pi(1/x)exp(~1/z) x>0,

0 <0,

where Py 1s a polynomial of degree at most 2k.
Corollary. The n-th degree Taylor polynomial of f at zero is T, (x) = 0.

Remark. While the Taylor polynomial can be a good approximation to a function,
it need not be. In this case all Taylor polynomials are zero, so f(x) = R, and the
remainder does not get small.

When looking for the cause of this, one finds that close to zero the derivatives
of f become arbitrarily large. From the Lagrange form of the remainder we know

that for each n € N there exists ¢, € (0,z) such that

n!

exp(—1/2) = By =
This implies that for = fixed,
n!
f™(c,) = — exp(—1/z) — 00 as n — oo.
xn

In other words, no matter how close z is to zero, there exists a sequence (¢,) with

cn € (0,2) such that lim f™(c,) = oo.
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Proof (of Theorem 5.4). We use mathematical induction in k. The case k = 0 is
clearly true, since we can choose Py(1/x) = 1. For the inductive step from k to

k + 1, we need to compute the derivative of

£ () = Py(1/z) exp(~1/x) x>0,
0 r<0.

For x < 0 we find f*+)(z) = 0, and for > 0 we use the product rule to compute

fE(2) =Pi(1/2)(=1/2®) exp(~1/2) + Pi(1/) exp(~1/z)(1/2?)
=(1/2%) (Pi(1/x) — Pi(1/x)) exp(—1/x)

=Pp1(1/x) exp(—1/z) ,

where Py, 1(t) = t*(P.(t) — P.(t)) is a polynomial of degree at most 2k + 2. For

x = 0 we compute the left and right limits of the difference quotient separately. We
fW () — f(0)

have lim = 0 and find
z /0 z—0
(@) — [P0
lim 0 =lim (1/2) P(1/x) exp(~1/x)
:tlirn tPy(t) exp(—t) =0
by (J). This concludes the inductive step. O
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Theorem 5.5 (L’Hospital’s Rule). For a € R and ¢ > 0, let f,g : D — R be
differentiable on (a — e,a + €), and suppose ¢'(x) # 0 for 0 < |v —a| < e. If
!/

exists and

lim f(z) = lim g(z) = 0 and if lim exists, then lim
r—a ( ) T—a ( ) Tr—a g,<x> Tr—a g(l‘)

i @)
e g(e) e (@)

Proof. We first show that g(x) # 0 for 0 < |x — a| < e. By assumption g(a) =
lim, ., g(z) = 0. If g(b) = 0 for some b with 0 < |b — a|] < &, then we can apply
Rolle’s Theorem to g and find that there exists some ¢ between a and b such that
g'(c) = 0, but this contradicts the assumption that ¢'(x) # 0 for 0 < |z —a| < e. So
in fact such a b does not exist.

Next, by the Second Mean Value Theorem applied to f and g, there exists some

¢ between a and x such that

By assumption f(a) = g(a) =0, and as g(z) # 0 as well as ¢'(c) # 0, we can write

fla)  F(e)
glz)  g(c)

Finally, when © — a then necessarily ¢ — a, so that

lim /() = lim 1)

o g@) et g(o)

Examples.

1) Apply 'Hospital’s rule:

y V1+2r -1+ y 1/V1+2r—1/2/1+4=x . 1 1
1m = 11m = —_ = .
x—0 x x—0 1 2 2

2) Apply 'Hospital’s rule twice:

. exp(z)—1—x 1
lim = —_— = - .
x—0 x2 x—0 2,1' x—0 2 2
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The rule also holds if f(z),g(x) — oc:

3)
—1 -1
o) = — iy = = iy 7 =l =
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6 Definition of the Riemann Integral
Lecture 17:

Let I = [a,b] for a < b be an interval. Given 14/02/13
a=20<T1 <Ty<...<Xp_1<x,=>0,

we call

P = {xo,l‘hxza S 7xn—17xn}

a partition of I. We denote the set of all partitions of I by P.

We denote I; = [z;-1,%;] and Az; = x; — ;-1 for i = 1,2,...,n. A partition is
called equidistant, if all I; have equal length Ax;.

P; is called a refinement of P; if P, C P,. Two partitions P; and P, have a common
refinement, for example P = P; U P, is such a refinement. The notion of refinement
defines a partial order on P.

o(P) = max{Ax; : i = 1,2,...,n} is called the mesh of P. Note that P, C P,
implies o(P;) > o(P,), i.e. a refinement has a smaller mesh.

Examples.

b—a b—a b—a

,a+ 2 s Rl ()
n n

. . b—a

tion of [a,b] with o(P) = :

n

1) P= {a,a—i— = b} is an equidistant parti-

1 2 2 1 2
2) P, = 0,—,—,...,—n is a refinement of P, = O,—,—,...,2 : both P,
2n" 2n 2n nn n
1 1
and P, are partitions of [0,1]. Here o(P) = 5. < o(P;) = —. Note that
n n
1 2 1
Py = {0’n+1’n+1"“’211} is also a partition of [0, 1], but is not a

refinement of P;.

Definition 6.1. Let f : [a,b] — R be bounded and P = {xo,x1,...,2,} be a
partition of [a,b]. We define the upper sum of f with respect to P

i=1

and the lower sum of f with respect to P

i=1
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where M; = sup{f(z) : x € I;} and m; = inf{f(z) : z € I;}.

Remark: Geometrically, if f is positive-valued then the area A between the z-axis

and the graph of f from a to b should satisfy
L(f.P)< A<U(f,P).

Example.
Given f : [-2,1] — R, z — 2% — z, consider the partition P = {-2,—1,1}.
Then [; = [-2,—1] and I, = [—1,1]. We find (and make sure you understand why!)

and this together with Az; = 1 and Axzy = 2 implies

U(f,P)=6-1+2-2=10,

L(f,P)=2-1+4(—1/4)-2=13/2.
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Lecture 18:

Theorem 6.2. Let f: [a,b] — R be bounded. If P, is a refinement of the partition 15/02/13

P, then
(1) U(f, P) <U(f, P), and
(2) L(f, P,) > L(f, ).

Proof. Let P, = {xg,21,...,2,}. First consider the special case where the refine-
ment P, is obtained from P; by adding a single new point y; i.e. P, = P, U {y} for
some y ¢ P;. Let i be such that x; 1 <y < z;. Then

M =sup{f(z) : x € [xi_1,y]} < M; and

M" =sup{f(z) :z € [y, x;]} < M, .
Therefore M;Ax; = M;(y —x;_1) + M;(z; —y) > M'(y — x;_1) + M"(z; — y), so that

U(f,P1) =Y M;Az; + M;Ax;
=1
i
> Z M;Ax; + M'(y — xizq) + M"(x; — y)
j=1
i

:U(f7P2)'

Now let P, be an arbitrary refinement of P;. Then P, is obtained from P; by adding

a finite number of points y;, creating a chain of partitions
PP=0QCQC...CQ =D

and

Ulf, 1) =U(f,Qo) 2U(f, Q1) >... 2 U(f,Q,) =U(f, P») .

A very similar argument leads to L(f, Py) > L(f, P). O

Corollary. Let f : [a,b] — R be bounded and let Py, Ps be partitions of [a,b]. Then
L(fapl) < U(f,Pg) .
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Proof. Let P = P, U P, be a common refinement of P, and P,. Then
L(f.P) < L(f.P) S U(f,P) < U(f, P) .

]

Corollary. Let f : [a,b] — R be bounded. {U(f, P): P € P} is bounded below and
{L(f,P): P € P} is bounded above.

Definition 6.3. Let f : [a,b] — R be bounded. We call
*b
/ f(z)de =inf{U(f,P): P € P}
the upper integral of f and

b
/ f(z)dez =sup{L(f,P): P € P}

the lower integral of f.

Remark. We have that,

/a*bﬂx)dxz /*:f(w)dx-

Definition 6.4. A bounded function f : [a,b] — R is Riemann integrable if the

upper and lower integral of f agree. The quantity

/abf(x) dz = /:bf(x) dz = /*:f(x) dx

is called the Riemann integral of f over [a,b].
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Theorem 6.5 (Riemann’s Condition). A bounded function f : [a,b] — R is Rie-

mann integrable if and only if

Ve>03PeP:U(f,P)— L(f,P)<c.

Proof. “=" Let f be Riemann integrable and

A=sup{L(f,P): PeP}=mt{U(f,P): P P}.
Then for a given € > 0 there exist P, P, € P such that
€ €
A—§<L<f,P1> and U(f,P2)<A+§

For P = P, U P, we have

U(f,P) — L(f,P) <U(f,P) — L(f, P) < A+ = — (A—f) —c.

2 2

If for any € > 0 there is a P € P such that
U(f,P)—L(f,P)<€

then
Og/*bf(x)dx—/bf(x)d:cgU(f,P)—L(f,P) <c.

As € > 0 can be arbitrarily small,

/a*bf(w)dxz/*:f(x)dx,

so f is Riemann integrable.

Examples.

1) Let f:[a,b] = R,  — ¢ be a constant function.

For any partition P = {zg, x1,...,2,} we find m; = M; = ¢ and thus
U(f,P)= ZMiAxi = CZA:L‘Z' =c(b—a)
i=1 i=1
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and
L(f,P)= ZmiAxi = CZAJ?i =c(b—a).
i=1 i=1

Therefore f is Riemann integrable with

/abf(x)dx:c(b—a).

1 z€Q,

0 z¢Q.
For any partition P = {zg,x1,...,2,} we find m; = 0 and M; = 1 and thus

2) Let f:a,b] = R, z —

=1 =1

and

L(f,P) =) miAz; =0.
=1

Therefore f is not Riemann integrable.

0 z€l0,1),
3) Let f:[0,2] = R, 2 —
1 xe(l,2.

1 1 T
I | |
| I |
| | |
| I |
| I |
| I |

i | | |
| I |
| I |
| I |
| | |
| I |
| I |
| I |
| | |

0 X, X i
1 2
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Let £ > 0. Choose 0 < 1 < 1 < 29 < 2withxo—x1 < eand P = {0, 21, x9, 2}.
Then
Mlzmle, Mgzl, m2:0, M3ZM3:17

and thus

and

L(f,P)=0-(x; —0)4+0-(x2—x1) +1-(2—22) =2 — a2,

so that
U(fap)_L(f>P):$2_xl<€-

Therefore f is Riemann integrable with

/02f(x)da::1.
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. . : : N Lecture 20:
Theorem 6.6. Every increasing or decreasing function f : [a,b] — R is Riemann
28/02/13

integrable.

Proof. Assume that f is increasing (the argument is very similar if f is decreasing).
Then f(a) < f(z) < f(b) for x € [a,b], so f is bounded.
Let £ > 0. Choose a partition P = {xzg,x1,...,2,} of [a,b]. with a mesh

£
< .
—f(b) = fla) +1
As f is increasing, M; = f(x;) and m; = f(x;_1), so that

o(P)

n

=1

= _(f() = f(zi1)) Ay

S}:U@D—ﬂﬁaﬁﬂP)

=o(P) Z(f(xz) — f(xi-1))

=1

=(f(b) = f(a)) o(P)

€
<(f(b) — f(a <e.
(f(b) (D1+ﬂ®—fW)
By Riemann’s Condition (Theorem 6.5), f is Riemann integrable. O]

Definition 6.7. A function f : D — R is uniformly continuous if

Ve>030 >0Vee DV eD, |[x—c| <d:|f(x)— fle)|<e.

Remark. This means that 0 is chosen independently of ¢. The statement that a

function f : D — R is merely continuous is equivalent to
VeeDVe>030>0Ve €D, |[x—c|<d:|f(x)— flc)| <e.

Note how the statement “Vc € D” has moved places. Directly from the definitions,
a uniformly continuous function is continuous, but a continuous function need not

be uniformly continuous.

55



Example.
f:R — R, z — 22 is continuous, but not uniformly continuous:

To show this, assume that f is uniformly continuous. Then for € = 1, say, there
exists a > 0 such that |[x —c| < d = |22 —?| <e=1forall z,c € R. As§ is
independent of ¢, this should be true for all ¢, for example if ¢ = 1/§. But then, for
r=c+06/2, we find |z — | = /2 < § and

2% — 2| = |(c+6/2)* — | = |ed + 62 /4] =1+ 6% /4> 1

which is a contradiction.

This example works because the domain is not closed and bounded. Continuous
functions on closed and bounded domains are in fact uniformly continuous. We shall
see below that this is an important ingredient in proving Riemann integrability of

continuous functions.

Theorem (Bolzano-Weierstraf}). Every bounded sequence has a convergent subse-

quence.

Theorem 6.8. Let f : [a,b] — R be continuous. Then f is uniformly continuous.
Proof. Suppose f is continuous on D = [a, b] but not uniformly continuous. Then
Je>0¥6>03ceDIxreD, |[x—c <d:|f(z)— flc) > €.

So there exists € > 0 such that for 6 = 1/n there exist ¢,,z, € D with

|z, — el < but |f(z,) — flcn)| > €.

Now (and this is the key step!) using Bolzano-Weierstra8, (¢,) contains a convergent

subsequence. Therefore there exist (n,),cy such that

(a) lim ¢, = d for some d € [a, V],

r—00

(b) lim z,, =d (as |x,, —d| < |z, — cn|+ |cn, —d|), and

(©) lim f(c,) = f(d) and lim f(z,,) = f(d).

((c) follows from (a) and (b) since f is continuous.) But by assumption for all n,

|f(z,) — f(en)| > €, which is a contradiction. O
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Theorem 6.9. Every continuous function f : [a,b] — R is Riemann integrable.
Lecture 21:

Proof. By Theorem 6.8, f is uniformly continuous on [a, b], so that 01/03/13

3

Ve > 036 >0Ve,d €[a,b], lc=(|<d:]f(c)— f()] < o

Now choose a partition P of [a, b] with o(P) < §. Then on each interval I;, f assumes
its minimum m; at some ¢; and its maximum M; at some ¢, so that m; = f(¢;) and

M; = f(). As |¢; — | < o(P) <6,

M; —m; = |f(c;) — f(ei)| <

b—a
Therefore
n c n
(f,P) = L(f, P) Z( mi) A b_a; ri=¢
By Riemann’s Condition (Theorem 6.5), f is Riemann integrable. [
Examples.

1) f:]a,b] = R, f(x) =ua:

f is increasing, therefore Riemann integrable. To compute the Riemann inte-
gral, choose

P,={a,a+ A;a+2A,...,a+nA =b}

where A = b ; ®  The mesh of the partition is given by o(P,) = A = b ; 4
We find
mi=a+ (i—1)A, and M, =a+iA.
Therefore
L(f,P,) = zn:(a + (i — 1)A)A =anA + wﬁ

i=1

—alb—a)+ %(b—a)Q (1 _ 1) |

n

Therefore

o |

b 1 CZ2
/ f(z)dr > lim L(f,Pn):a(b—a)+§(b—a)2: 5

n—oo
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Further,

n

U(f,P) =Y (a+iA)A =anA +

i=1

n(n+1)
2

A2

1 1
=a(b—a)+ §(b— a)? (1 + ﬁ) .
Therefore

b a?
2 2

*b
/ f(z)dx < lim U(f, Py,) :a(b_a)+%(b_a)2 _

n—oo

[ rwas [Crwa,

/abf(ﬂf)dxz/a*bf(x)dx:/*:f(g)dx:b_;_a;.

2) f:[l,a] = R, f(z)=1/a:

f is decreasing, therefore Riemann integrable. To compute the Riemann inte-

Since

we have

gral, choose
Po={1=q¢"¢"".¢"....q" = a}
where ¢ = {/a. We find

Avi=q —q7 = (g- 17",

so that the mesh of the partition is given by o(P,) = (¢ — 1)¢"~!. We find

1
m; =—, and M, =

qz qi—l :

Therefore

3

L(f, P,) = (q— 1)(]%1

R =

<.
I
—

I
=
|
=
|
=
I
3
7/ N
[a—y
|
|
N~
I
3
N
[a—y
|
QI,_.

Q
N————

<.
Il
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Therefore

Similarly

Thus,

Since

we have

/a f(z)dx > lim L(f,P,) = lim n (1 —a™"/")

1 n—0o0 n— 00

= lim n (1 — exp (—% log(a)>)

i T exp(—tlog(a))
t—0 t
1y 8L P 08()

t—0

= log(a) .

n

Z Zq—lzn(q—l)‘

=1 i=1

/*a f(z)dx < lim U(f,P,) = lim n (al/” —1)
1

n—oo N—oo

1
= lim n { exp (glog(a)> - 1)

exp(tlog(a)) — 1

=lim
t—0 t
1 t1
 timy LD XPUIOB)) _ )

/:f(a:)dws/l*af@)dx
/1af(:t) dx = [af(x) dx = /1 f(x) dx = log(a) .
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7 Properties of the Riemann Integral

Theorem 7.1. Let f : [a,b] — R be Riemann integrable. If [c,d] C [a,b] then f is

Riemann integrable on |c, d].

Proof. Let ¢ > 0. Then by Riemann’s Condition (Theorem 6.5), there exists a
partition P of [a, b] such that U(f, P) — L(f, P) < e. If we define P’ by

/
P =PuU {C,d} = {LU(),SCl,. oy L = CyLa1y v o s Ly = d,karTJrl, . ,I‘n}
then P’ is a refinement of P, so

U(f,P/)—L(f,P/)SU(f,P)—L(f,P)<€

Now let
i
P" = {$k7$k+17-"7wk+r} .

Note that P” is a partition of [c, d], with

k+r

U(f> PII) - L(f7 P”) = Z (M’L - mz)sz

i=k+1
< Z(Mz —m;)Aw;
=1
=U(f,P")— L(f,P") <e
Thus f is Riemann integrable on [c, d], by Riemann’s Condition (Theorem 6.5). [

Theorem 7.2. Let f : [a,b] — R be Riemann integrable on |a,c|] and [c,b] where

a <c<b. Then f is Riemann integrable on [a,b] and

/f m_/f m+/f

Proof. Let e > 0 and let P, and P, be partitions of [a, c] and [c, b], respectively, with

U(f,Pl)—L(f,P1)< andU(f,Pg)—L(f,P2)<

3
5

DO | ™

Then P = P, U P, is a partition of [a, b] with

Ulf,P)—L(f,P)=U(f,P)+U(f, ) — L(f,P) — L(f, ) <¢
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and hence f is Riemann integrable on [a, b], by Riemann’s Condition (Theorem 6.5).

Moreover, as

L@Pﬂs/U@MxSWLH>am MﬁRﬁS/f@MxSWﬁ%)

we have
c b
L@Hﬁ/f@%+/f®M§U@m-

Clearly we also have

L(4.P) < [ fla)dn <UGP).

and taking differences leads to

me—mﬂms/Ummw/fmm—/f@@évmm—uﬂm

or, equivalently,

/acf(x)dx+/cbf(x)dx—/abf(x)dac

Therefore. we have shown that for all e > 0

Cf(:zc) dr + bf(z) dr — bf(x) dx
[ s [ |

/acf(x)dx+/cbf(x)dx:/abf(x)da:.

Remark. Because of Theorem 7.2 it makes sense to define for a > b

/abf(x)d:c:—/baf(x)dx.

Then, if f is Riemann integrable on a closed and bounded interval I, and a,b,c € I,

Cf(x)da:+ bf(:v)das: bf(x)dx.
[ e | a

<é€

so that

we have
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Theorem 7.3. Let f,g: [a,b] — R be bounded and P be a partition of [a,b]. Then
(a) U(f+g,P)<U(f,P)+Ulg, P), and
(b) L(f +9g,P) > L(f,P) + L(g, P).

Proof. For a subinterval I; of the partition P, we write M;(h) = sup{h(z) : x € I}
and m;(h) = inf{h(x) : = € [;}.

(a) On a subinterval [; of the partition P we have

M;(f + g) =sup{f(x) +g(x) : v € I;}

<sup{f(z) : x € i} +sup{g(z) : x € Li} = Mi(f) + Mi(g) -
Thus
U(f+g,P) :Zn;Mi(f + 9)Ax;
< i M;(f)Az; + i M;(g)Az; = U(f, P)+ U(g, P) .
(b) Similarly,
L(f+g9,P) = i mi(f + g)Az;

i=1

> Zmi(f)A:vi + Zmi(g)Azi =L(f,P)+ L(g,P) .

=1
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Lecture 23:
Theorem 7.4. Let f,g: [a,b] — R be Riemann integrable and ¢ € R. Then f + g 07/03/13

and cf are Riemann integrable, and

/ab(f+g)(m)dx:/abf(x)dx+/abg(x)dx and

bcf(a:) dx =c bf(a:) dx .
/ /

Proof.  (a) Let ¢ > 0. By Riemann’s Condition there exist partitions P, and P, of
la, b] such that

U(f,Pl)—L(f,P1)<g and U(g,Pg)—L(g,P2)<%.
LetP:P1UP2. Then
U(f,P)—L(f, P) <U(f, ) — L(f, 1) <5 and

U(g, P) — L(g, P) <U(g, P») — L(g, ») <

[NCENON NN

By Theorem 7.3 it follows that

so f + g is Riemann integrable on [a, b].
We proceed now as in the proof of Theorem 7.2. As
b b

LUP) < [ J@)de <ULP) and L. P)< [ gla)ds <Ug.P)

we have
b b
LU.P)+ Llg.P) < [ fla)dat [ gla)de <UG.P)+ U9, P).
Clearly we also have
b
LU.P)+ L PV S L +0.P) < [ (74 g)(w)do

<U(f+g,P)<U(f,P)+Ul(g,P),
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and taking differences leads to
b b b
| raran gz [+ g)ia)ds

Therefore we have shown that for all e > 0

<e,

/ab(f+g)(ﬂf)dw—/abf(:v)dx—/abg(x)dfﬂ

so that

/ab(f+g)(x)dx:/abf(x)d:c+/abg(a:)da:.
(b) This is an exercise. The key step is to show that
Ulcf, P) = L(cf, P) < |c[(U(f, P) — L(f, P)) .
]

Theorem 7.5. Let f : [a,b] — R be Riemann integrable. If g : [a,b] — R differs

from f at finitely many points then g is also Riemann integrable, and

/abg(x)d:c:/abf(:c)dx.

Proof. For ¢ € [a,b], define

1 z=c,
Xe(T) =
0 x#c.

If ¢ differs from f at {cy,co,...,c,}, then
g(x) = f(x)+ Y (g(c) = fe)xe, (@) |
i=1

and by Theorem 7.4 it suffices to show that y.(z) is Riemann integrable with
fab Xc(z) dx = 0. We shall show this by choosing suitable partitions.
If a < ¢ <b,choose P = {a,x1,x9,b} witha <27 < ¢ <xg <band xe—x1 < €.
It follows that
0= L(xe, P) < Ulxe, P) < €.
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If ¢ = a, choose P = {a,x1,b} with a < 21 < b and z; — a < €. It follows that
0=L(xs,P) <U(xa,P) < €.

If ¢ = b, choose P = {a,xy,b} with a < z; < b and b — 1 < e. It follows that
0= L(xs, P) <U(xp, P) <.

Thus, for all e > 0 there exists a partition P with U(x., P)—L(x., P) < €. Therefore,
by Riemann’s Condition, y. is Riemann integrable. As L(x., P) = 0 for any partition

P, we have

/abxc(x)dx:0.
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Lecture 24:

Theorem 7.6. Let f,g : [a,b] — R be Riemann integrable. If f(x) < g(x) for all 08/03/13

x € [a,b] then

[ @ s [ g

Proof. As g(x) — f(x) > 0, we find that for any partition P of [a, b],

OSL(g—f,P)g/ab(g—f)(x)dx:/ dx—/ fa
OJ

Theorem 7.7. If f : [a,b] — R is Riemann integrable, then |f| is Riemann inte-

< / )l

Proof. For a partition P of [a,b], we define

grable, and
x) dx

M; = sup{f(x) :z € I,}, M =sup{|f(z)|:z € L},
=inf{f(z):z € L;}, m; =inf{|f(z)| : z € L} .

Starting with
L @) = 1f W)l < |f(z) — f(y)

we can show (exercise problem) that
M —mi < M;—m; .

Therefore

n

U(lf], P) = L(|f], P) ZZ(M@-* —m;)Az;

i=1

As f is Riemann integrable, it follows that |f| is Riemann integrable. Furthermore,

=) < fx) < |f(2)]
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implies by Theorem 7.6 that

b b b
- [1@lde < [ f@ydo< [ 5@l

]

Theorem 7.8. If f : [a,b] — R is Riemann integrable then f? is Riemann integrable.

Proof. As f is bounded on [a,b], there exists K € R such that |f(z)] < K for all

x € |a,b]. Given a partition P of [a, b], we have

M;(f*) = (M;(If1))* and  mi(f*) = (mi(| 1)) -

Therefore

Mi(f?) =mi(f*) = M(f1) +ma(| f 1) M(F]) = ma(1f1)) < 2K (M1 f]) = ma((f1]) -

Thus
U(f*, P)— L(f* P) <2K (U(|f|, P) = L(|f], P)) ,

and hence f? is Riemann integrable. O

Theorem 7.9. If f,g : [a,b] — R are Riemann integrable then fg is Riemann

integrable.

Proof. We write

((f(2) + 9(2))* = (f(2) — 9(2))?) -

1 =

f(@)g(z) =

Now f+g and f — g are Riemann integrable by Theorem 7.4, and thus (f + g)* and

(f — g)? are Riemann integrable by Theorem 7.8. By Theorem 7.4 it follows that
1

fg= 1 (f +9)* = (f — 9)?) is Riemann integrable. O
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8 The Fundamental Theorem of Calculus . ,
ecture 25:

Definition 8.1. Let I be an interval and let f : [ — R. A differentiable function 11/03/13
F: 1 — R is called an antiderivative of f if F'(x) = f(x) for all x € 1.

Theorem 8.2. If F' and G are antiderivatives of f, then G = F' +c for some c € R.
Also, F' + ¢ is an antiderivative of f for all ¢ € R.

Proof. (G—F) =G —F' = f—f=0,s0G—F isconstant. Also (F+¢) =F'=f
for all ¢ € R. m

Theorem 8.3 (The Fundamental Theorem of Calculus). Let f : [a,b] — R be

Riemann-integrable. If F is an antiderivative of f then

/f@mx:mm—me

Proof. Let P be a partition of [a, b]. Applying the Mean Value Theorem to F on I;,

there exists a ¢; € (z;_1, ;) such that

F(x;) — F(xi_1) = F'(¢;) (2 — xioq) = f(¢;)Ax; .

=inf{f(x):z € ;} < f(a) <sup{f(z):z € L,} = M,
it follows that

P) SZ(F(%)—F(%—ﬂ) <U(f,P).

/f )da < F(b /f

and as f is Riemann integrable, it follows that

b
/ flz)dx = F(b) — F(a) .

Therefore
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Example. An antiderivative of f(z) = 1/x is F(z) = log(z), as F'(z) = f(x). We

use this to compute

da:

1 = log(z)|] = log(a) — log(1) = log(a) -

For further examples, see Calculus I.

Theorem 8.4. Let f : [a,b] — R be Riemann integrable and define F : [a,b] — R

= /atf(:c)dx

by

Then
(a) F is continuous on [a,b].
(b) If f is continuous at ¢ € |a,b] then F is differentiable at ¢ and F'(c) = f(c).

Proof. (a) The function f is Riemann integrable, hence bounded, i.e. there exists
an M € R such that |f(z)| < M for all z € [a, b].

Given t,ty € [a,b], we have

z)ds — /:Of(@ dz| =

If |t —tg| <0 = % then |F(t) — F(to)| < ¢, implying continuity of F'.
(b) Let f be continuous at ¢, i.e. Ve > 0 30 > 0 Vo € [a,b],|z — ] < 0 :
|f(z) — f(c)| <e. Hence, if 0 < |t — ¢| < 6 then

IF(t) — F(ty)| = ) de| < Mt —to| .

FO= PO _ ) S 0] L) = el 1) = 10l
Thus F'(c) = lim Ft) = Flo) exists, and is equal to f(c). O

t—c t—rc
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Example. Let f:[—1,1] — R be given by Lecture 26:

14/03/13
0 ze[-1,0],
fx) =
1 z€(0,1].
Then

t 0 tel|-1,0],
F(t):/ flz)dx = <l |
-t t te(0,1].

The function F' is continuous on [—1, 1] and differentiable on [—1,0) U (0, 1], but not
differentiable at ¢ = 0.

Corollary. Every continuous function f : [a,b] — R has an antiderivative.
Proof. By Theorem 8.4, F(t) = f; f(t)dt is an antiderivative of f. O
Definition 8.5. If F' is an antiderivative of f, we define

/f(x)d:v:F(x)—i—c,

the indefinite integral of f.

Theorem 8.6. If f and g have antiderivatives on I, then so do f 4+ g and df for
d € R. Moreover,

/(f—l—g)(x)dx:/f(x)dx—i—/g(x)dx and /df(m)dx:d/f(x)dx.

Proof. Let F' and G be antiderivatives of f and g respectively. F' = f and G' = g
imply (F' 4+ G)' = F' + G' = f + g. Therefore

/(f+9)(95)d$:/f($)+9(x)dx:F(:z:)+G(x)+c:/f(:1:)dw+/g(w)dx.

Similarly, (dF')" = dF’, so that

/df(x)dx:dF(x)—l—c:d/f(x)dx.
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Theorem 8.7. Let f,g: I — R be differentiable. If fg' has an antiderivative, then

so does f'g, and

/ f(@)g(@) de = f(z)g(z) — / Fa)g/ () de:.

Proof. Let H be the antiderivative of h = f¢', i.e. H = h = fg'. Then (fg) =
f'g + fg¢' implies that

flg=(f9) —td' =(fg) —H = (fg—H) .
Therefore fg — H is an antiderivative of f’g, and
[ F@g(@)ds = f@g(o) ~ Hiz) + e = f@)g(a) ~ [ fo)g(a)da
O

Theorem 8.8. Let g : I — R be differentiable and let F' be an antiderivative of

f:g(I) = R. Then F o g is an antiderivative of (f o g)g’, i.e.

/f(9($))g'(:v) dr = F(g(z)) +c.
Procf. W verity that (o g)/(z) = F'(g(a))g (z) = F{g(a))g (2). 0

Corollary. Let g : [a,b] — R be continuously differentiable and let f : g([a,b]) — R

be continuous. Then

b g(b)
/ F(9(@))g(z) da = /() Flu)du

Proof. f and (fog)g" are both continuous on [a, b], hence Riemann integrable. As f

is continuous, it has an antiderivative, F'. By Theorem 8.8, F'og is an antiderivative
of (fog)g', and
[ Ho@)g @) = Flgta)) +c.

By the Fundamental Theorem of Calculus,

b 9(b)
| Ftotengte) e = Pl ~ Figte) = [ sy
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9 Sequences and Series of Functions

Let D C R. Unless stated otherwise, in this section all functions map D — R.

Recall that a sequence (a,) of real numbers converges to a limit a if
Ve >03ng € NVn >ng: |la, —al <e.

Similarly, for a sequence of functions ( f,,) we can discuss convergence of this sequence
to a limiting function. This leads to the consideration of the convergence of the
sequence (a,) where a, = f,(x) for z € D. Keeping the point z fixed, this leads
to the notion of pointwise convergence, while allowing = to vary within the domain
D leads to the notion of uniform convergence. The next definition makes this idea

more precise.

Definition 9.1. Let (f,,) be a sequence of functions.

(1) fn converges pointwise to a function f if

Ve e DVe>03ny € NVn >ng: |fu(x) — f(2)] <e.

(2) fn converges uniformly to a function f if

Ve >03dng e NVn >nog Ve € D: |fu(x) — f(x)] <e.

Remark. In (1) ny depends on z and ¢, whereas in (2) ny depends on ¢, but not

on z. In both cases, we can write
f=1lim f,.
n—oo

Note that the limit notation does not indicate whether the convergence is uniform
or pointwise.
By definition, uniform convergence implies pointwise convergence, but the con-

verse 1S not true.
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Examples.

(1) fn:10,1] = R, — a™

0.8 1
0.6 1
0.4 1

0.2 1

Thus f,, converges pointwise to the discontinuous function

0 0<z<1,
f:00,1]] >R, z+

1 z=1.

This convergence is not uniform: we need to show

de >0Vno € NIn >ng 3z € [0, 1] : |ful(x) — f(z)] > €.

Take ¢ = 1/2 and, for any n, consider the points z = 271/ Then:

> €.

N

£2(27) = F27)| = (27 - 0] =
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(2) fn:10,1/2] = R, z+— 2™

0.6
0.5—_
0.4—- i
¥ 0.3-
0.2—_ S

0.1 J;

-0.1 0] 01 02 03 04 05 06
0.1 x

For 0 < 2 < 1/2 we find lim f,(z) = lim 2™ = 0. Thus f, converges

n—oo

pointwise to

f:00,1/2] = R, x+—0.
This convergence is uniform:

The difference between f,(x) and f(z) is largest at x = 1/2. Therefore, given
any € > 0, if we pick an integer ng such that ng > —log(e)/log(2) to ensure

(1/2)" < g, then for all n > ny,

|fu(z) = f(2)| =]2" = 0] < (1/2)" < (1/2)™ < e.
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(3) fn:10,2] = R,

(

nx 0<z<1/n,

T—=92—nr 1/n<x<2/n,

0 2/n<ax<2.

fn(0) =0, and if 0 < = < 2 then f,(z) =0 if n > 2/x, so that
lim f,(z)=0 forall0<z<2.

n—oo

Thus f,, converges pointwise to
f:00,2l =R, x+—0.
This convergence is not uniform: take ¢ = 1 and consider x = 1/n:

[fa(/n) = f(A/n)| =1 -0 =1=>¢.
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Lecture 28:
Remark. The following figures indicate the idea of an “c-tube” around the limiting 103/

18/03/13
function f.

S B

x
£ — tihe of uniform convergence

In the case of uniform convergence, given ¢ > 0, the graph of y = f,(z) must lie
entirely within the e-tube of f for all sufficiently large n.

When the limiting function f is discontinuous, the e-tube is “broken”.

x
£ — tube of a discont. function is broken

If this discontinuous f is a limit of continuous f,, no f, can lie entirely within the

e-tube of f if € is sufficiently small.

76



Theorem 9.2. Let f, : D — R converge uniformly to f : D — R. If f, are

continuous at a € D then f is continuous at a.
Proof. We need to show
Ve>030>0Vzx eD, |z —al <d:|f(x)— fla)] <e.
By assumption we know that
(a) V&' >03ng e NVn>nog Ve € D:|f(x) — fu(z)| <€, and

(b) Vn>0Ve" >030 >0Vx € D,|lx —a| <0 :|fu(x) — fula)] < £

We start estimating the distance between f(x) and f(a) by splitting | f(z) — f(a)]

into three parts:

[f (@) = fla)] < [f(2) = ful2)] + [ fu(2) = fula)] + [fula) = f(a)] -
First, given € > 0, we choose ¢’ = £/3. By (a) there is an ny such that for all n > ng
and for all z € D:
[f(x) = fulz)] <€/3
(so that clearly also |f(a) — fn(a)| < €/3). Next, fix an n > ny and choose £” = /3.
By (b) there exists a § > 0 such that for all z € D, |x — a| < 0:

() = fula)] <€/3
Thus, given € > 0 we have shown that there is a 6 > 0 such that

e € ¢
|f(I)—f(a)|<§+§+§:5

for |z —a| < 0. O

Remark. This theorem implies that under the assumption of uniform convergence

of the functions we can exchange limits as follows:

lim lim f,(z) = lim lim f,(z) .

T—a N—00 n—oo r—a

f(x) fn(a)

If the convergence of f,, to f is not uniform, this is generally not correct. For example
lim lim 2" =0 but lim lim 2" =1 (see example (1) above).
r—1— n—o0 n—oo r—1—

An immediate consequence of Theorem 9.2 is the next theorem.

7



Theorem 9.3. If a sequence of continuous functions converges uniformly, then the

limiting function is continuous.

Remark. Theorem 9.3 says that if the (pointwise) limiting function of a sequence
of continuous functions is discontinuous, then the convergence cannot be uniform.

Examples (continued).

(1) Here each of the functions f, is continuous, but the limiting function f is not

continuous. Therefore the convergence of f,, to f cannot be uniform.

(2) Here the f, are continuous, and the convergence is uniform. Therefore the

limiting function is continuous.

(3) Here the f,, are continuous, and the limiting function is continuous. However,

this does not imply uniform convergence.
Theorem 9.4. Let f, : [a,b] — R be Riemann integrable. If f,, converges uniformly

to f:]a,b] — R then f is Riemann integrable and

n—oo
a

b b
/ f(x)de = lim [ f,(z)dx.

Remark. This theorem implies that under the assumption of uniform convergence

of the functions we can exchange limits as follows:

b b
/ lim f,(z)dr = lim [ f,(z)dz.

n—oo n—oo
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Proof of Theorem 9.4

Let € > 0. We want to show that there exists a partition P such that U(f, P) —

L(f, P) < e. We shall do this in three steps.

(a) We know that f, converges uniformly to f:

dn e NVzx € [a,b] : |f(z) — fulz)| < 30—a)

(b) Once n is chosen, we use Riemann integrability for f,:

AP : U(fn, P) — L(fn, P) <

Wl ™

(¢) Now we constrain upper and lower sums U(f, P) and L(f, P): f, is bounded,

and (a) implies that f — f,, is bounded, so that

M; = sup{f(x) :z € I} <sup{fp(x):x € L;} +sup{f(z) — fu(z): 2 € I;}

(n) <
SMZ + 3(()——61) s and
m; = inf{f(z) :z € L} >int{f,(z) : x € L} + nf{f(x) — fu(zx) : x € [;}
(n) £
=M 3 )

Therefore

- n € €
U(f. P) = U(fa P) < (M; — M™)Ax; < 30— a) > Az = 5 - and

=1
Thus

9 € 9

<-4 -4-=¢.
_3+3+3 €

Therefore f is Riemann integrable.
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Moreover

/abf(a:) dx — /abfn(a:) dx

b 9
< / /(@) = fal2)ldz < (b~ a)sup{|f(2) = fu(@)| : @ € [a,0]} < 5,

[ 10~ nw

SO

b b
lim [ fu(z)dx :/ f(z)dx .

n—oo

Example.

(4) Consider

(

n’z 0<z<1/n,

fai[0,2] =R, 2= dom—n2z 1/n<z<2/n,

0 2/n <z <2.

\

As in Example (3), as n — oo, f,(x) — f(x) = 0 pointwise, but not uniformly.

We compute

2 1/n 2/n
/ fulz)de = / n?x dr + / (2n —n*z)dr =1
0 0

1/n

which is not equal to

/OQf(a:)da::().
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Theorem 9.5. Let f, : [a,b] — R be continuously differentiable. If f, converges
pointwise to f : [a,b] — R and f converges uniformly to g : [a,b] — R, then f is
differentiable and ' = g.

Remark.

This theorem implies that under the assumption of uniform convergence of the
derivative of the functions we can exchange limits as follows:

(1im fn)' — lim (') .

n—oo n—oo

Proof. Consider g, = f!. By assumption, g, converges uniformly to g on [a,b].

Hence, since each g, is continuous, Theorem 9.3 implies that g is continuous.
Moreover, g, is Riemann integrable on [a,b]. Restricting to the interval [a, z]

for a < < b, we apply Theorem 9.4 to g on [a,x]. It follows that ¢ is Riemann

integrable on [a, x] and that

n—oo
a

/ gt)dt = lim [ g,(t)dt.

Now fo(z) = fu(a) + (fu(x) = fu(a)) = fula) + [ gn(t) dt is an antiderivative of

gn = fl, and as f,, converges pointwise to f, we compute

f(z) = lim f,(z)

n—oo

= lim (fn(a) +/j gn(t) dt)
= sy + Jim [ gt
:f(a)—l—/azg(t)dt'

As g is continuous, by Theorem 8.4 we see that f is differentiable and f' = g.
[

Remarks.

(1) In Theorem 9.5, actually it suffices for f,, to be differentiable, i.e. f) need not

be continous (proof omitted).
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(2) Even if f, is differentiable and f, — f uniformly, the limiting function need

not be differentiable.

Definition 9.6. (a) > f.(z) converges pointwise if
n=1

(@) = 3 ful)

converges pointuise as k — 00.

(b) i fu(zx) converges uniformly if
n=1

su(@) = 3 fule)

converges uniformly as k — oo.

Remark.

In both cases we may write Y f,(x) = limy_ o Sg(2).

n=1
Example. ———— converges uniformly: we compute
p n; CEED g y p
1
O R T 1 1
— — . = 1— .
5+(®) ;(2+x2)” 212 _ _1 1+x2( (2+a:2)k)
2 + x2
A 1 <1f IlzeR 0 as k hich implies (pointwise)
— for — = — ich impli intwi
52—1—332 <3 or all RO as 0o, whic plies (pointwise
convergence

o0

Yo
2+a22)"  1+a2’

n=1

We estimate
1 1 1

= . < —
1+22 (24 22)k — 2k

)

1+ 22

The bound 1/2* tends to zero as k — oo independently of x, so convergence is

uniform.
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Lecture 30:
Theorem 9.7 (Weierstral M-Test). Let 3 a, be convergent. If |fu(x)| < a, for 22/03/13

n=1

all z € D then > fn(x) converges uniformly on D.
n=1

Proof. For a fixed x € D, |f.(z)| < a,. So by the Comparison test (from Conver-

gence and Continuity) > |f.(z)| converges. This implies (from a result in Conver-

n=1
[es)

o0
gence and Continuity) fn(x) converges. So Y f.(z) converges pointwise (i.e.
n=1 n=1

i fn(z) = f(x) for some function f). We estimate
n=1

<D @IS ) an

> falx)

n=k+1

'f(w) = @] =D fala) =Y ful@)

As > a, converges, the bound > a, — 0 as k — oo independently of x € D.
n=1 n=k+1
That is, given any € > 0, there exists a kg € N such that if £ > kg then

'f(:v)—an(x) < Z a, <.

n=1 n=k+1
So indeed > f,.(x) converges uniformly to f(z). O
n=1
Example (continued). For f,(z) = 2y we estimate

1
@) < 55 = an

o] > 1 00
and as Y a, = Y o = 1 converges, by the Weierstral M-Test > f,,(x) converges
n=1 n=1 n=1

uniformly for x € R.

Theorem 9.8. (a) Let f, be continuous. If > f, is uniformly convergent then

n=1
o0
f= > fa is continuous.
n=1

(b) Let f, be continuously differentiable. If > f, is pointwise convergent and
n=1

o0
> fl is uniformly convergent then f =
n=1

Z fn is differentiable and f' = 21 I

n=1
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(¢) Let f, be Riemann integrable on [a,b]. If > f. is uniformly convergent then
n=1

00 b 00
[ =" fu is Riemann integrable and [ f(z)dz = ) f; folz)de.
n=1 a n=1

Proof. This is an immediate consequence of Theorems 9.3, 9.4, and 9.5. O
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10 Power Series

Definition 10.1. Y a,z"™ with a, € R is called a power series.
n=0 -
Its radius of convergence r is given by

o
T = sup {|x| : E apx" converges} :

n=0

o0
(Note that a finite r does not exist if > a,x™ converges for all z € R.)

n=0

Theorem 10.2. (a) If > a,z™ converges for x = ¢, then Y a,z" converges ab-
n=0 n=0
solutely for all x € R with |z| < |c|.

(b) If > apx™ diverges for x = ¢, then Y. a,z"™ diverges for all x € R with
n=0 n=0
] > [e].

Proof.  (a) Convergence of Y a,c" implies that lim a,c” = 0. Thus for |z| < |¢|

n=0 n—00
there exists an ng € N such that
T " T |"
lapa™| = |anc™] - ’— < ‘— for n > ny.
c c

o
Since |Z] <1,

n=ng

converges. So by the Comparison test (from Conver-

E)"

o0 o0
gence and Continuity) Y |a,x™| converges. Thus, Y |a,z"| converges.
n=ng n=0

(b) If > anx™ converged for some x with || > |c|, then by (a) > a,y™ would
n=0 n=0
converge for all y with |y| < |z|, in particular for y = ¢, which is a contradic-

tion.

]

Corollary. > a,x™ converges absolutely for all x € R with |x| < r and diverges for
n=0

o0
all x € R with |z| > r, where r is the radius of convergence of > a,z".
n=0

Remark. Convergence for x = £r must be considered separately.
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Theorem 10.3. Let r > 0 be the radius of convergence of > a,x™ and let0 < p < r.

n=0

Then > ap,x™ converges uniformly on D = {x € R: |z| < p}.
n=0

Proof. As 0 < p <1, > a,p" converges absolutely. As |a,2"| < |a,p™| for z € D,
n=0

o0
the Weierstra§ M-Test implies uniform convergence of ) a,z™ on D. O
n=0

Theorem 10.4. Let r > 0 be the radius of convergence of f(x) = > anx™. Then
n=0

for all x € R such that |z| <,

+1

T e ol
t)dt = n .
/0f<) ;an—i-l

Proof. Choose p € R such that 0 < p < r. Then, by Theorem 10.3, »_ a,z"
=0

converges uniformly on D = {z € R : |z| < p}. As f,(z) = ap2” is Riemann

integrable, Theorem 9.8(c) implies that f(x) = Y a,z™ is Riemann integrable on
n=0

D and that

z e x > pntl
f(t)dt = / a,t" dt = an,
Jj =3 L= u iy

]

Theorem 10.5. Let r > 0 be the radius of convergence of f(x) = > apx™. Then
n=0

for all x € R such that |z| <,
f(x) = Znan:ﬁn_l :
n=1

Proof. Choose p € R such that 0 < p < r. Then > a,x™ converges uniformly
n=0

on D = {x € R: |z|] < p}. To apply Theorem 9.8(b), we need to show that

o0
3" na,z" ! also converges uniformly on D. Once this is established, it follows that
n=1

f is differentiable on D and that f'(z) = > na,z" .
n=1
Now pick p’ such that p < p’ <r. Then > a,p™ ! converges absolutely, and

=1
n—1
()

N———
<1 for n>ng

n—1| — /n—1| /n—1|.

<lanp

[nana""| < [nanp |anp
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The Weierstral M-Test then implies the uniform convergence of 3 na,z"~' for
n=1

|z| < p, as needed. O
Corollary. f(z) = Y a,a" is for |z| < r infinitely often differentiable, and f*) (z) =
n=0

io: nn—1)...(n—k+1a,z"*.
n=~k

oo f(n) 0
Remark. We find f*)(0) = klay, so that f(z) = Y / '( )x”, the Taylor series of
n=0 n'
f about zero.
Examples.
(1) For |z| < 1 we have
! =1l—x+a®—a>+ :i(—l)”x”
T2 e 2 :
and integration gives by Theorem 10.4
z 2 3 4 o0 pan
log(1 = —dt=r——+———+...= -1
csllto)= ) Td=r-gry gt ;()n—l—l

for |z < 1.

Note that for z = 1 the first sum diverges (1 —1+41—1+4...) but the second
sum converges (1 —1/2+1/3 —1/4 4 ...), whereas for x = —1 both sums
diverge.

(2) exp(—a?) = i (_12#% for all z € R, so that

n=0

n ,.2n+1

’ ()"
—t? dtZE ~——————— for all z € R.
/0 exp(—t) £ nl(2n + 1) or all
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We shall now connect power series to Taylor series. We note that Lecture 32:

s 28,/03/13
fl@)=> an(z—a)"

[e.e]
converges for |z — a| < r, where r > 0 is the radius of convergence of > a,a™. We
n=0

identify f®(a) = klay, so that

2 4(n)(g
=3 10 oy

n!

n=0
which is just the Taylor series of f about a.

Recall from Chapter 5 that for any n > 0 we define

") (g
Thol(x) :Zf ( )(x—a)k
k=0

k!
the n-th degree Taylor polynomial of f at a and

Fr(c)
" (1)

(z — a)"*

the Lagrange form of the remainder term, and that Taylor’s Theorem (Theorem

5.3) gives us:
f(x) =T,a(x) + R,.

We now give an alternative form of Taylor’s Theorem:

Theorem 10.6 (Taylor’s Theorem with Integral Form of the Remainder). Let
f :la,z] — R be n times continuously differentiable on [a,z] and (n 4+ 1) times

differentiable on (a,x). Then
z p(n+1)
f(.T) = Tn,a(l’) +/ fT'(t)(ﬂf - t)n dt .

Remark. The term
T f(nt1) (¢
I, :/ 0 pyar
“ n!

is called the integral form of the remainder term.
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Proof. As in the proof of Taylor’s Theorem (Theorem 5.3), we write

" oflk)
F(t) = Tgfe) = 3 T 0w oy

and compute

(n+1)
P = L0 g

Therefore by the Fundamental Theorem of Calculus

T z p(n+1)
F(:c)—F(a):/ F’(t)dt:/ 0

n!

and with F(z) =T, ,(z) = f(x) and F(a) = T,, .(z) we have

(n+1)
f(2) / AU x—t) dt

Remark. An analogous result holds if [a, x] is replaced by [z, a] for z < a.

Theorem 10.7. For o € R we have

(1+2)” i()kf0r|:c|<1,

k=0

. (Z) _afa- 1)..].{(04— kE+1)

!
Proof. We need only consider z # 0. We apply Theorem 10.6 to f(z) = (1 4+ z)*.

From

@) =ala—1).. (a—k+1)(1+z)F

we see that f*)(0) = a(a—1)...(a — k +1). Therefore

(14 2) = Zij (g)xk + /0 ala— 1>7'1'!'(O‘ =) (14l

We need to estimate the remainder term

/‘” ala — 1)n' (a—n) (1+t) " Yo —t)"dt

:a(a; 1) /Ox(1+t)“—1 G;;)n dt




If x >0 we have 0 <t <z < 1, so that

r—t 1+
< =xr—1 <zx.
1+1¢ 1+1¢

Similarly, if x < 0 we have 0 >t > 2 > —1, so that
x—t 1+

> =z > .
— 1+t 1+t —

Taken together, we conclude that inside the integral we can estimate
T —1
1+t
Moreover, for |z| < 1, M = max{|1+¢|*"! : |t| < |z|} is finite. Putting this together,

(")

< fal .

we arrive at

a—1 z r—t\"
1+ [ =—) dt| <M
o) oo (357) o<

Applying the quotient test, we find that

[

|z| — |z| <1 asn — oo,

B «Q
n+1

-1
and thus M a<a ) |z|™ — 0 as n — oo. This proves that
n
x —1)... (a—
/ Gt RS CiD F RS P
0 n!
as n — 00, as required. O

Examples. For |z| < 1,

so that (also for |z| < 1)

Term-by-term integration gives

: Y S R S S AN e DA
arcsm(x)—/o m—g( p >2k+1x
13 1-325 1-3-527
2




