MTH5105 Differential and Integral Analysis 2008-2009

Midterm Test

Problem 1: Let f(x) = 1/x.

(a) Determine the Taylor polynomials $T_{3,1}$ and $T_{4,1}$ of degree 3 and 4 at a=1 for f.

[15 marks]

(b) Using the Lagrange form of the remainder, or otherwise, show that

$$T_{3,1}(x) < f(x) < T_{4,1}(x)$$
 for all $x > 1$.

[15 marks]

Solution: (a) f(x) = 1/x, $f'(x) = -1/x^2$, $f''(x) = 2/x^3$, $f'''(x) = -6/x^4$, $f^{(4)}(x) = 24/x^5$, and therefore f(1) = 1, f'(1) = -1, f''(1) = 2, f'''(1) = -6, $f^{(4)}(1) = 24$.

[5 marks]

Hence

$$T_{3,1}(x) = \frac{1}{0!} 1 + \frac{(-1)}{1!} (x-1) + \frac{2}{2!} (x-1)^2 + \frac{(-6)}{3!} (x-1)^3$$

$$= 1 - (x-1) + (x-1)^2 - (x-1)^3,$$

$$T_{4,1}(x) = \frac{1}{0!} 1 + \frac{(-1)}{1!} (x-1) + \frac{2}{2!} (x-1)^2 + \frac{(-6)}{3!} (x-1)^3 + \frac{24}{4!} (x-1)^4$$

$$= 1 - (x-1) + (x-1)^2 - (x-1)^3 + (x-1)^4.$$

[5 marks each]

(b) For x > 1 there is a $c \in (1, x)$

[5 marks]

such that

$$f(x) = T_{3,1}(x) + \frac{24/c^5}{4!}(x-1)^4 = T_{3,1}(x) + (x-1)^4/c^5$$
.

[5 marks]

But as c > 1, we have $(x - 1)^4/c^5 < (x - 1)^4$, and thus

$$T_{3,1}(x) < 1/x < T_{4,1}(x)$$
.

[5 marks]

- Problem 2: (a) Give the definition of $f : \mathbb{R} \to \mathbb{R}$ being differentiable at a point $a \in \mathbb{R}$.

 [10 marks]
 - (b) Using the definition, determine whether or not

$$f(x) = \begin{cases} \frac{x}{1 + \exp(1/x)} & x \neq 0\\ 0 & x = 0 \end{cases}$$

is differentiable at x = 0. (For this you may wish to consider the left and right derivatives of f(x) at x = 0.) Find f'(0), if it exists. [20 marks]

Solution: (a) f is differentiable at $a \in \mathbb{R}$ if the limit

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

exists. [10 marks]

(b) We need to consider

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{1}{1 + \exp(1/x)}.$$

[5 marks]

But as $\lim_{t\to\infty} \exp(-t) = 0$ we have

$$\lim_{x \to 0^+} \frac{1}{1 + \exp(1/x)} = \lim_{t \to \infty} \frac{1}{1 + \exp(t)} = \lim_{t \to \infty} \frac{\exp(-t)}{\exp(-t) + 1} = 0$$

[5 marks]

and

$$\lim_{x \to 0^-} \frac{1}{1 + \exp(1/x)} = \lim_{t \to \infty} \frac{1}{1 + \exp(-t)} = 1 \; .$$

[5 marks]

As the left and right limits disagree, the limit

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}$$

does not exist. Thus f is not differentiable at 0 and f'(0) does not exist. [5 marks]

Problem 3: (a) State the Mean Value Theorem.

[15 marks]

(b) Show that for all $x, y \in \mathbb{R}$

$$|\sin(y) - \sin(x)| \le |y - x|.$$

[25 marks]

You may assume standard properties of trigonometric functions.

Solution: (a) MVT: Let f be continuous on [a, b] and differentiable on (a, b).

[5 marks]

Then there is a $c \in (a, b)$

[5 marks]

such that

$$f'(c) = \frac{f(b) - f(a)}{b - a} .$$

[5 marks]

(c) Consider three cases: (a) x < y, (b) x = y, and (c) x > y. For x = y the conclusion is true, and (c) follows from (a) by exchanging x and y. So we only need to consider x < y.

[5 marks]

Let x < y and apply the MVT to $f(x) = \sin(x)$ on [x, y].

[5 marks]

There is a $c \in (x, y)$ such that

$$\cos(c) = \frac{\sin(y) - \sin(x)}{y - x} .$$

[5 marks]

But $|\cos(c)| \le 1$, so that

$$1 \ge \left| \frac{\sin(y) - \sin(x)}{y - x} \right| .$$

[5 marks]

Therefore $|\sin(y) - \sin(x)| \le |y - x|$.

[5 marks]