MTH5103 Complex Variables 2008-2009

Sample Test

Question A. [25 marks]
a) Let $z_{1}=2-i$ and $z_{2}=3 e^{-\frac{\pi i}{2}}$. Compute:
(i) $\operatorname{Im}\left(z_{2}\right)$, (ii), $\left|z_{1}\right|$, and (iii) $\left|z_{1}+z_{2}\right|$.
[15 marks]
b) Describe the set of points $z \in \mathbb{C}$ satisfying:
(i) $|2 i z-1|=4$, and (ii) $|z|^{2}+4 \operatorname{Im}(z)=-4$
[10 marks]
Question B. [25 marks]
a) Find all complex solutions of $\frac{i}{i+1} z^{4}=-1$.
[15 marks]
b) Show that under the map $z \mapsto w=z^{2}+i$, the line $\operatorname{Im}(z)=1$ is mapped to the parabola given by $u=\left(\frac{v-1}{2}\right)^{2}-1$, where $w=u+i v$.

Question C. [20 marks]

Find the Möbius transformation $f(z)=(a z+b) /(c z+d)$ which maps $0 \rightarrow 0,1 \rightarrow 2$, and $-i \rightarrow-2$. Check your results by substituting the values for z back in.
Question D. [25 marks]
a) Starting from the definition of the derivative of a complex function as a limit, find the derivative of $f(z)=i z^{2}$ for $z \in \mathbb{C}$.
b) Let $g(z)=g(x+i y)=x y-i x^{2}$. At what points z is the function g differentiable?
[10 marks]
KAM 04/02/2009

