MTH5103 Complex Variables 2008-2009

Sample Test

Question A. [25 marks]

a) Let $z_1 = 2 - i$ and $z_2 = 3e^{-\frac{\pi i}{2}}$. Comput	e:
(i) $Im(z_2)$, (ii), $ z_1 $, and (iii) $ z_1 + z_2 $.	[15 marks]

b) Describe the set of points $z \in \mathbb{C}$ satisfying: (i) |2iz - 1| = 4, and (ii) $|z|^2 + 4Im(z) = -4$ [10 marks]

Question B. [25 marks]

- a) Find all complex solutions of $\frac{i}{i+1}z^4 = -1$. [15 marks]
- b) Show that under the map $z \mapsto w = z^2 + i$, the line Im(z) = 1 is mapped to the parabola given by $u = \left(\frac{v-1}{2}\right)^2 1$, where w = u + iv. [15 marks]

Question C. [20 marks]

Find the Möbius transformation f(z) = (az + b)/(cz + d) which maps $0 \rightarrow 0, 1 \rightarrow 2$, and $-i \rightarrow -2$. Check your results by substituting the values for z back in. **Question D.** [25 marks]

a) Starting from the definition of the derivative of a complex function as a limit, find the derivative of $f(z) = iz^2$ for $z \in \mathbb{C}$. [15 marks]

b) Let $g(z) = g(x + iy) = xy - ix^2$. At what points z is the function g differentiable?

[10 marks]

KAM 04/02/2009