Chapter 1

| ntroduction

What do we mean by Statistical Modelling and a Statisticati®1@

Think back to Introduction to Statistics or Statistical Metls modules. There
were statements like:Y7, Y5,...,Y,, are independent and identically distributed
normal random variables with meanand variancer?”. Another way of writing
this is

Yi=p+¢e i=1,2,...,n,
wheree; ~ N(0,0?) and are independent. We wanted to estimatehich can
be done by usind’, or to test a hypothesis such &g : 1 = 1.

This statistical model has two components, a part whichk tedlabout the average
behavior ofY’, which is constant, and a random patrt.

In Statistical Modeling | course we are interested in modaédisre the mean de-
pends on values of other variables. In the simplest case,ave & response
variableY and one explanatory variablé. Thenyu depends on the value of,
sayx;, and we may writeu; = S5y + p1x;, wheres, and 5, are some unknown
constant parameters.

In practice, we start with a real life problem for which we Baome data. We
think of a statistical model as a mathematical represeamtaif the variables we
have measured. This model usually involves some parameWes may then
try to estimate the values of these parameters or to testthgpes about them.
We may wish to use the model to predict what would happen irfutee in a
similar situation. In order to test hypotheses or to makelipt®ns we usually
have to make some assumptions. Part of the modelling prosd¢sgest these
assumptions. Having found an adequate model we must contpgmedictions
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with reality to check that it gives reasonable answers.

We can illustrate these ideas using a simple example. Segpaswe are inter-
ested in some items, widgets say, which are manufacturegtaines. The size of
the batch and the time to make the batch in man hours are ext;@ee Table 1.1.

x (batch size) y (man-hours)

30 73
20 50
60 128
80 170
40 87
50 108
60 135
30 69
70 148
60 132

Table 1.1: Data on batch size and time to make each batch

We begin by plotting the data to see what sort of relationsfight hold.

Plot of time versus batch size
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Figure 1.1: Scatterplot of time versus batch size.

| Graph— Scatterplof ~ Use| Labels...|to add title.

From this plot, Figure 1.1, it seems that a straight linetr@eship is a good rep-
resentation of the data although it is not an exact relatignsJsing MINITAB
we can fit this model and obtain the fitted line plot, Figure 1.2



Fitted Line Plot
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Figure 1.2: Fitted line plot of time versus batch size.
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| Stat— Regression Fitted Line Plot.. |

The fitted line isy = 10 + 2x. One interpretation of this is that on average it
takes 10 hours to set up the machinery to make widgets andtttaes 2 hours
to make each widget.

But before we come to this conclusion we should check thatlata satisfy the
assumptions of the statistical model. One way to do thislsdk at residual plots,
as in Figurel.3. We shall discuss these later in the coud@ahe practicals but
here we see that there is no apparent reason to doubt our .nhodékstt, for small
data sets histograms do not represent the distribution Wedl better to examine
the Normal Probability Plot.
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Stat— Regression- Fitted Line Plot...

Graphs...
® Four in one
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Residual Plots for y

Normal Probability Plot Versus Fits
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Figure 1.3: Residual plots.
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Statistical modelling is iterative. We think of a model wdiéee will fit the data.
We fit it and then check the model. If it is OK we use the modelxdpl&n what
is happening or to predict what may happen. Note that we gdhmilery wary of
making predictions far outside of thevalues which are used to fit the model.

In general different techniques are needed depending otheshiine explanatory
variables are qualitative or quantitative and the randasparse variable is dis-
crete or continues.

In Statistical Modelling | we will mostly study continuous with quantitative
X1, Xs,...,X,. In Statistical Modelling Il you would study continuo&Swith
qualitativeX;, X5, ..., X,,. SMI and SMIl usd.inear Models.

In more advanced courses you can study both models with aireigf quantita-
tive and qualitative explanatory variables and also discrewhere we no longer
assume errors are normally distributed.

In Time Series we relax the assumption that errors are inckgyg or uncorre-
lated.



Chapter 2

Simple Linear Regression

2.1 TheModd

We start with the simplest situation where we have one respuariableY” and
one explanatory variabl& .

In many practical situations we deal with an explanatoryade X that can be
controlled and a response variablevhich can be observed. We want to estimate
or to predict the mean value &f for given values ofX working from a sample
onn pairs of observations

{(xh y1)7 (x27 y2>7 te (.’L’n, yn)}

Example 2.1 Sparrow’s wings.

An ornithologist is interested in the relationship of thengiilength and age of
sparrows. Data were collected of 13 sparrows of known agi|lasvs. The last
three columns show patrtial calculations needed for fittinggaession line.

Readings of wing’s length may vary for different birds of g@me age. TimeX,
is known exactly and it is not random, but we may assume Yhetrandom, so
that repeated observationsYffor the same values of may vary.

A useful initial stage of modelling is to plot the data. Fig@.1 shows the plot of
the sparrow wing’s length against sparrow’s age.

The plot suggests that the wing length and age might be Inesated, although
we would not expect the wing’s length increasing linearlgioa long period of
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time. In this example the linear relationship can be consuidor some short
growth time only.

z; [days] yi [cm] TilYi 7 y;
z1 =3 yp =14 4.2 9 1.96
T =3 Yo = 1.5 4.5 9 2.25
z3="5 y3 = 2.2 11.0 25 4.84
T4 =06 ys = 2.4 14.4 36 5.76
r5 =8 ys = 2.8 22.4 64 7.84
z6 =8 Yo = 3.2 25.6 64 10.24
r7 =10 Y7 = 3.2 32.0 100 10.24
zg =11 ys = 3.9 42.9 121 15.21
Tg = 12 yo = 4.1 49.2 144 16.81
r11 = 14 Y11 =4.5 67.5 196 20.25
z19 = 15 Y12 = 5.2 83.2 225 27.04
z13 = 16 y13 = 5.0 80.0 256 25.00
Moo =124 | Yy, =441 | Y wiy; = 488.3 | Do af = 1418 | Y yF = 169.53

The length [cm] of sparrow wings against age [days] of sparrows.
L
54 -
L
L J
4 i ¥
- L ] L J
3 q
L J
-
L ]
2 &
S

1 = T T T T T T T T

2 4 6 8 10 12 14 16

x

Figure 2.1: Plot of the length of sparrow wings against aggpafrows.

Other types of function could also describe the relatigmstell, for example a
guadratic polynomial with a very small second order coedfiti However, it is
better to use the simplest model which describes the rekttip well. This is
calledthe principle of parsimony.

| What does it mean “to describe the relationship we|I"?
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It means to represent well the expected shape and also tiabiligr of the re-
spons&” at each value of the explanatory varialde We will be working on this
problem throughout the course.

We can write
Y; =E(Y|X = x;) + ¢;, whereg; isarandom variablei =1,2,...,n.
Hence, if the expected relationship is linear, we have
Y, = By + Pix; +¢&;, wherei=1,2,... n.

We calle; arandom error. Standard assumptions about the error are

1. E(g;) =0foralli =1,2,...,n,

2. var(g;) = o*foralli =1,2,...,n,

3. cov(ej,ej) =0foralli,j =1,2,...,n,i# j.
The errors are often calledkpartures from the mean. The errar; is a random
variable, hencé’ is a random variable too and the assumptions can be rewritten
as

2. var(Y|X =z;) =02 foralli=1,...,n,

8. cov(Y|X =2, Y|X =x;)=0foralli,j =1,...,n,i # j.
It means that the dependenceYobn X is linear and the variance of the response

Y at each value ofX is constant (does not depend of) andY|X = z; and
Y| X = x; are uncorrelated.

Also, it is often assumed that the conditional distributadrit” is normal. Then,
due to the assumption (3) on the covariances, the variablase independent.
This is written as

Y|X =z ~ N (i, 0?).

The graph in Figure 2.2 summarizes all the model assumptions
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Figure 2.2: Model Assumptions about the randomness of vasens.

For simplicity of notation we define
Y, =Y|X =, (2.1)
Then the simple linear model can be written as

E(Y;) = Bo + B,
var(Y;) = o

If we assume normality, we have so callddrmal Simple Linear Regression
Model denoted in one of the equivalent ways:

* Y deN(Mi702)> wherep; = Sy + B, i =1,2,...,n,
® YideN(ﬁO‘f‘ﬁlxi,UQ),’i:1,2,...,71,

o Y, = [y + Bix; +¢;, Whereg; T;ZN(QUQ)’Z':LQP'W”'

In all cases’, and/; are unknown constant parameters.
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Example 2.2 Sparrow wings continued.
The fitted linear regression line plot, the residual diagieesand the numerical
output from MINITAB are as follows.

Fitted Line Plot
y = 0.6490 + 0.2876 %

s 0.207048
5 | R-Sq 37.6%
R-Saladj) 37.4%

2 2 6 a8 10 12 14 16
x

Figure 2.3: Fitted regression line for the length of sparmawgs against age of
sparrows.

Residual Plots for y
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Figure 2.4: Residual diagnostics plots for the fitted regjoesline for the length
of sparrow wings against age of sparrows.
Regressi on Analysis: y versus X

The regression equation is
y = 0.649 + 0.288 x
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Pr edi ct or Coef SE Coef T P
Const ant 0. 6490 0. 1410 4.60 0.001
X 0.28761 0.01350 21.30 0.000

S = 0.207048 R Sq = 97.6% R-Sq(adj) = 97.4%

Anal ysi s of Variance

Sour ce DF SS (%S F P
Regr essi on 1 19.458 19.458 453.89 0.000
Resi dual Error 11 0.472 0. 043

Tot al 12 19.929

MINITAB

| Stat— Regression- Regression. |

to obtain more numerical output than from

| Stat— Regression- Fitted line plot...|

The residual plots (Figure 2.4) do not contradict the assiomp of normality and
a constant variance of the errors. The numerical output sliloat the coefficients
By and 3, are statistically significant when both are in the model. fidgpective
values of the test function T and the corresponding p-vdieestingH, : Sy =

0 versusH; : 5y # 0 and forH, : 5, = 0 versusH; : 5, # 0 areT = 4.60 with
p = 0.001 andT = 21.30 with p < 0.001.



