
Chapter 1

Introduction

What do we mean by Statistical Modelling and a Statistical Model?

Think back to Introduction to Statistics or Statistical Methods modules. There
were statements like: “Y1, Y2,. . .,Yn are independent and identically distributed
normal random variables with meanµ and varianceσ2”. Another way of writing
this is

Yi = µ+ εi i = 1, 2, . . . , n,

whereεi ∼ N(0, σ2) and are independent. We wanted to estimateµ, which can
be done by usinḡY , or to test a hypothesis such asH0 : µ = µ0.

This statistical model has two components, a part which tells us about the average
behavior ofY , which is constant, and a random part.

In Statistical Modeling I course we are interested in modelswhere the mean de-
pends on values of other variables. In the simplest case, we have a response
variableY and one explanatory variableX. Thenµ depends on the value ofX,
sayxi, and we may writeµi = β0 + β1xi, whereβ0 andβ1 are some unknown
constant parameters.

In practice, we start with a real life problem for which we have some data. We
think of a statistical model as a mathematical representation of the variables we
have measured. This model usually involves some parameters. We may then
try to estimate the values of these parameters or to test hypotheses about them.
We may wish to use the model to predict what would happen in thefuture in a
similar situation. In order to test hypotheses or to make predictions we usually
have to make some assumptions. Part of the modelling processis to test these
assumptions. Having found an adequate model we must compareits predictions
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with reality to check that it gives reasonable answers.

We can illustrate these ideas using a simple example. Suppose that we are inter-
ested in some items, widgets say, which are manufactured in batches. The size of
the batch and the time to make the batch in man hours are recorded, see Table 1.1.

x (batch size) y (man-hours)
30 73
20 50
60 128
80 170
40 87
50 108
60 135
30 69
70 148
60 132

Table 1.1: Data on batch size and time to make each batch

We begin by plotting the data to see what sort of relationshipmight hold.

Figure 1.1: Scatterplot of time versus batch size.

MINITAB
Graph→ Scatterplot Use Labels... to add title.

From this plot, Figure 1.1, it seems that a straight line relationship is a good rep-
resentation of the data although it is not an exact relationship. Using MINITAB
we can fit this model and obtain the fitted line plot, Figure 1.2.
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Figure 1.2: Fitted line plot of time versus batch size.

MINITAB
Stat→ Regression→ Fitted Line Plot...

The fitted line isŷ = 10 + 2x. One interpretation of this is that on average it
takes 10 hours to set up the machinery to make widgets and thenit takes 2 hours
to make each widget.

But before we come to this conclusion we should check that ourdata satisfy the
assumptions of the statistical model. One way to do this is tolook at residual plots,
as in Figure1.3. We shall discuss these later in the course and in the practicals but
here we see that there is no apparent reason to doubt our model. In fact, for small
data sets histograms do not represent the distribution well. It is better to examine
the Normal Probability Plot.

MINITAB
Stat→ Regression→ Fitted Line Plot...
Graphs...
⊙ Four in one
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Figure 1.3: Residual plots.

Statistical modelling is iterative. We think of a model we believe will fit the data.
We fit it and then check the model. If it is OK we use the model to explain what
is happening or to predict what may happen. Note that we should be very wary of
making predictions far outside of thex values which are used to fit the model.

In general different techniques are needed depending on whether the explanatory
variables are qualitative or quantitative and the random response variable is dis-
crete or continues.

In Statistical Modelling I we will mostly study continuousY with quantitative
X1, X2, . . . , Xp. In Statistical Modelling II you would study continuousY with
qualitativeX1, X2, . . . , Xp. SMI and SMII useLinear Models.

In more advanced courses you can study both models with a mixture of quantita-
tive and qualitative explanatory variables and also discreteY where we no longer
assume errors are normally distributed.

In Time Series we relax the assumption that errors are independent or uncorre-
lated.



Chapter 2

Simple Linear Regression

2.1 The Model

We start with the simplest situation where we have one response variableY and
one explanatory variableX.

In many practical situations we deal with an explanatory variableX that can be
controlled and a response variableY which can be observed. We want to estimate
or to predict the mean value ofY for given values ofX working from a sample
onn pairs of observations

{(x1, y1), (x2, y2), . . . , (xn, yn)}.

Example 2.1. Sparrow’s wings.
An ornithologist is interested in the relationship of the wing length and age of
sparrows. Data were collected of 13 sparrows of known age, asfollows. The last
three columns show partial calculations needed for fitting aregression line.

Readings of wing’s length may vary for different birds of thesame age. Time,X,
is known exactly and it is not random, but we may assume thatY is random, so
that repeated observations ofY for the same values ofX may vary.

A useful initial stage of modelling is to plot the data. Figure 2.1 shows the plot of
the sparrow wing’s length against sparrow’s age.

The plot suggests that the wing length and age might be linearly related, although
we would not expect the wing’s length increasing linearly over a long period of
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time. In this example the linear relationship can be considered for some short
growth time only.

xi [days] yi [cm] xiyi x
2

i y
2

i

x1 = 3 y1 = 1.4 4.2 9 1.96
x2 = 3 y2 = 1.5 4.5 9 2.25
x3 = 5 y3 = 2.2 11.0 25 4.84
x4 = 6 y4 = 2.4 14.4 36 5.76
x5 = 8 y5 = 2.8 22.4 64 7.84
x6 = 8 y6 = 3.2 25.6 64 10.24
x7 = 10 y7 = 3.2 32.0 100 10.24
x8 = 11 y8 = 3.9 42.9 121 15.21
x9 = 12 y9 = 4.1 49.2 144 16.81
x10 = 13 y10 = 4.7 65.8 169 22.09
x11 = 14 y11 = 4.5 67.5 196 20.25
x12 = 15 y12 = 5.2 83.2 225 27.04
x13 = 16 y13 = 5.0 80.0 256 25.00∑
xi = 124

∑
yi = 44.1

∑
xiyi = 488.3

∑
x
2

i = 1418
∑

y
2

i = 169.53

Figure 2.1: Plot of the length of sparrow wings against age ofsparrows.

Other types of function could also describe the relationship well, for example a
quadratic polynomial with a very small second order coefficient. However, it is
better to use the simplest model which describes the relationship well. This is
calledthe principle of parsimony.

What does it mean “to describe the relationship well”?
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It means to represent well the expected shape and also the variability of the re-
sponseY at each value of the explanatory variableX. We will be working on this
problem throughout the course.

We can write

Yi = E(Y |X = xi) + εi, whereεi is a random variable, i = 1, 2, . . . , n.

Hence, if the expected relationship is linear, we have

Yi = β0 + β1xi + εi, wherei = 1, 2, . . . , n.

We callεi a random error. Standard assumptions about the error are

1. E(εi) = 0 for all i = 1, 2, . . . , n,

2. var(εi) = σ2 for all i = 1, 2, . . . , n,

3. cov(εi, εj) = 0 for all i, j = 1, 2, . . . , n, i 6= j.

The errors are often calleddepartures from the mean. The errorεi is a random
variable, henceYi is a random variable too and the assumptions can be rewritten
as

1. E(Y |X = xi) = µi = β0 + β1xi for all i = 1, . . . , n,

2. var(Y |X = xi) = σ2 for all i = 1, . . . , n,

3. cov(Y |X = xi, Y |X = xj) = 0 for all i, j = 1, . . . , n, i 6= j.

It means that the dependence ofY onX is linear and the variance of the response
Y at each value ofX is constant (does not depend onxi) andY |X = xi and
Y |X = xj are uncorrelated.

Also, it is often assumed that the conditional distributionof Y is normal. Then,
due to the assumption (3) on the covariances, the variablesYi are independent.
This is written as

Y |X = xi ∼
ind

N (µi, σ
2).

The graph in Figure 2.2 summarizes all the model assumptions.
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xi xj X

E(y i)

E(yj)

Y

Figure 2.2: Model Assumptions about the randomness of observations.

For simplicity of notation we define

Yi := Y |X = xi. (2.1)

Then the simple linear model can be written as

E(Yi) = β0 + β1xi,

var(Yi) = σ2.

If we assume normality, we have so calledNormal Simple Linear Regression
Model denoted in one of the equivalent ways:

• Yi ∼
ind

N (µi, σ
2), whereµi = β0 + β1xi, i = 1, 2, . . . , n,

• Yi ∼
ind

N (β0 + β1xi, σ
2), i = 1, 2, . . . , n,

• Yi = β0 + β1xi + εi, whereεi ∼
iid

N (0, σ2), i = 1, 2, . . . , n.

In all casesβ0 andβ1 are unknown constant parameters.
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Example 2.2. Sparrow wings continued.
The fitted linear regression line plot, the residual diagnostics and the numerical
output from MINITAB are as follows.

Figure 2.3: Fitted regression line for the length of sparrowwings against age of
sparrows.

Figure 2.4: Residual diagnostics plots for the fitted regression line for the length
of sparrow wings against age of sparrows.

Regression Analysis: y versus x

The regression equation is
y = 0.649 + 0.288 x
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Predictor Coef SE Coef T P
Constant 0.6490 0.1410 4.60 0.001
x 0.28761 0.01350 21.30 0.000

S = 0.207048 R-Sq = 97.6% R-Sq(adj) = 97.4%

Analysis of Variance

Source DF SS MS F P
Regression 1 19.458 19.458 453.89 0.000
Residual Error 11 0.472 0.043
Total 12 19.929

MINITAB
Stat→ Regression→ Regression...

to obtain more numerical output than from

Stat→ Regression→ Fitted line plot...

The residual plots (Figure 2.4) do not contradict the assumptions of normality and
a constant variance of the errors. The numerical output shows that the coefficients
β0 andβ1 are statistically significant when both are in the model. Therespective
values of the test function T and the corresponding p-valuesfor testingH0 : β0 =
0 versusH1 : β0 6= 0 and forH0 : β1 = 0 versusH1 : β1 6= 0 areT = 4.60 with
p = 0.001 andT = 21.30 with p < 0.001.


