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2.2 Least Squares Estimation

Estimation is a method of finding values of the unknown model parameters for a
given data set so that the model fits the data in a “best” way. There are various
estimation methods, depending on how do we define “best”. In this section we
consider theMethod of Least Squares Estimation(LS or LSE).

TheLS estimatorsof the model parametersβ0 andβ1 minimize the sum of squares
of errors denoted byS(β0, β2). That is, the estimators minimize

S(β0, β1) =
n∑

i=1

ε2i =
n∑

i=1

[Yi − (β0 + β1xi)]
2. (2.2)

The “best” here means the smallest value ofS(β0, β1). S is a function of the
parameters and so to find its minimum we differentiate it withrespect toβ0 and
β1, then equate the derivatives to zero. We have





∂S
∂β0

= −2
∑n

i=1
[Yi − (β0 + β1xi)]

∂S
∂β1

= −2
∑n

i=1
[Yi − (β0 + β1xi)]xi

(2.3)

When compared to zero we obtain so callednormal equations:





∑n

i=1
(β̂0 + β̂1xi) =

∑n

i=1
Yi

∑n

i=1
(β̂0 + β̂1xi)xi =

∑n

i=1
xiYi

(2.4)

This set of equations can be written as





nβ̂0 + β̂1

∑n

i=1
xi =

∑n

i=1
Yi

β̂0

∑n

i=1
xi + β̂1

∑n

i=1
x2
i =

∑n

i=1
xiYi

(2.5)

The solutions to these equations are

β̂0 =
1

n

n∑

i=1

Yi − β̂1

1

n

n∑

i=1

xi

= Ȳ − β̂1x̄

(2.6)
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and, from the second normal equation

β̂1 =

∑n

i=1
xiYi −

1

n
(
∑n

i=1
xi)(

∑n

i=1
Yi)∑n

i=1
x2
i −

1

n
(
∑n

i=1
xi)2

=

∑n

i=1
(xi − x̄)(Yi − Ȳ )∑n

i=1
(xi − x̄)2

=
SxY

Sxx

,

(2.7)

where

SxY =
n∑

i=1

(xi − x̄)(Yi − Ȳ ), Sxx =
n∑

i=1

(xi − x̄)2.

To check thatS(β0, β1) attains a minimum at(β̂0, β̂1) we calculate second deriva-
tives and evaluate the determinant

∣∣∣∣∣∣∣

∂2S

∂β2

0

∂S
∂β0β1

∂S
∂β1β0

∂2S
∂β2

1

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣

2n 2
∑n

i=1
xi

2
∑n

i=1
xi 2

∑n

i=1
x2
i

∣∣∣∣∣∣
= 4n

n∑

i=1

(xi − x̄)2 > 0

for all β0, β1 (it does not depend on the parameters).

Also, ∂2S

∂β2

0

> 0 (and∂2S

∂β2

1

> 0) for all β0, β1. This means that the functionS(β0, β1)

attains a minimum at(β̂0, β̂1) given by (2.6) and (2.7).

Remark 2.1. Note that the estimators depend onY . They are functions ofY which
is a random variable and so the estimators of the model parameters are random
variables too. When we calculate the values of the estimators for a given data set,
i.e. for observedvalues ofY at given values ofX, we obtain so calledestimates
of the parameters. We may obtain different estimates ofβ0 andβ1 calculated for
different data sets fitted by the same kind of model.

�

Example 2.3. (Wing’s length cont.)
For the given data in Example 2.1 we obtain

13∑

i=1

yi = 44.1,
13∑

i=1

xi = 124.

13∑

i=1

xiyi = 488.3,

13∑

i=1

x2
i = 1418.
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MINITAB
Stat→ Basic Statistics→ Store Descriptive Statistics...

Hence, the estimates of the model parameters are

β̂1 =

∑n

i=1
xiyi −

1

n
(
∑n

i=1
xi)(

∑n

i=1
yi)∑n

i=1
x2
i −

1

n
(
∑n

i=1
xi)2

=
488.3− 1

13
× 124× 44.1

1418− 1

13
× 1242

= 0.28761

β̂0 = ȳ − β̂1x̄ =
1

13
× 44.1− 0.28761×

1

13
× 124 = 0.649

and the estimated (fitted) linear model is

ŷi = 0.649 + 0.288xi.

From this fitted model we may calculate values of the wing’s length of sparrows
for any age within the used age interval. For example, we may estimate the wing’s
length of sparrows of age 7 days (the missing value). It is

ŷi = 0.649 + 0.288× 7 = 2.664 cm.

MINITAB
Calc→ Calculator...

�

Remark 2.2. Two special cases of the simple linear model are

• no-intercept model

Yi = β1xi + εi,

which implies thatE(Y |X = 0) = 0, and

• constant model

Yi = β0 + εi,

which implies that the response variableY does not depend on the explana-
tory variableX.

�
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2.3 Properties of the Estimators

Definition 2.1. If θ̂ is an estimator of θ and E[θ̂] = θ, then we say θ̂ is unbiased
for θ.

Note that in this definition̂θ is a random variable. We must distinguish between
θ̂ when it is an estimate and when it is an estimator. As a function of the random
variablesYi it is an estimator. Its value obtained for a given data set (observedyi)
is an estimate.

The parameter estimator̂β1 can be written as

β̂1 =
n∑

i=1

ciYi, where ci =
xi − x̄∑n

i=1
(xi − x̄)2

=
xi − x̄

Sxx

. (2.8)

We have assumed thatY1, Y2, . . . , Yn are normally distributed and hence using
the result that a linear combination of normal random variables is also a normal
random variable,̂β1 is also normally distributed. We now derive the mean and
variance ofβ̂1 using the representation (2.8).

E[β̂1] = E[

n∑

i=1

ciYi]

=

n∑

i=1

ciE[Yi]

=
n∑

i=1

ci(β0 + β1xi)

= β0

n∑

i=1

ci + β1

n∑

i=1

cixi

but
∑

ci = 0 and
∑

cixi = 1 as
∑

(xi − x̄)xi = Sxx, soE[β̂1] = β1. Thusβ̂1 is
unbiased forβ1. Also

var[β̂1] = var

[
n∑

i=1

ciYi

]

=
n∑

i=1

c2i var[Yi] since theY ’s are independent

=
n∑

i=1

σ2(xi − x̄)2/[Sxx]
2

= σ2/Sxx.
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Hence,

β̂1 ∼ N

(
β1,

σ2

Sxx

)
.

Similarly it can be shown that

β̂0 ∼ N

(
β0, σ

2

[
1

n
+

x̄2

Sxx

])
.

2.4 Assessing the Model

2.4.1 Analysis of Variance Table

Parameter estimates obtained for the model

Yi = β0 + β1xi + εi

can be used to estimate the mean response corresponding to each variableYi, that
is,

Ê(Yi) = Ŷi = β̂0 + β̂1xi, i = 1, . . . , n.

These, for a given data set(xi, yi), are calledfitted valuesand are denoted bŷyi.
They are points on thefitted regression linecorresponding to the values ofxi.
The observed valuesyi usually do not fall exactly on the line and so are not equal
to the fitted valueŝyi, as it is shown in Figure 2.5.

Theresiduals(also called crude residuals) are defined as

ei := Yi − Ŷi, i = 1, . . . , n, (2.9)

These are estimators of the random errorsεi.

Thus

ei = Yi − (β̂0 + β̂1xi)

= Yi − Ȳ − β̂1(xi − x̄).

and ∑
ei = 0.
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Figure 2.5: Observations and fitted line for the Sparrow wing’s length data.

Also note that the estimatorŝβ0 and β̂1 minimize the functionS(β0, β1). The
minimum is called theResidual Sum of Squaresand is denoted bySSE, that is,

SSE =
n∑

i=1

[Yi − (β̂0 + β̂1xi)]
2 =

n∑

i=1

(Yi − Ŷi)
2 =

n∑

i=1

e2i . (2.10)

Consider the constant model
Yi = β0 + εi.

For this modelβ̂0 = Ȳ and we have

Ŷi = Ȳ , ei = Yi − Ŷi = Yi − Ȳ

and

SSE = SST =

n∑

i=1

(Yi − Ȳ )2.

It is called theTotal Sum of Squaresand is denoted bySST . For a constant model
SSE = SST . When the model is non constant, i.e. there is a significant slope,
the differenceYi − Ȳ can be split into two components: one due to the regression
model fit and one due to the residuals, that is

Yi − Ȳ = (Yi − Ŷi) + (Ŷi − Ȳ ).
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Figure 2.6: Observations, fitted line and the mean for a constant model.

For a given data set it could be represented as in Figure 2.6.

The following theorem gives such an identity for the respective sums of squares.

Theorem 2.1.Analysis of Variance Identity.
In the simple linear regression model the total sum of squares is a sum of the
regression sum of squares and the residual sum of squares, that is

SST = SSR + SSE, (2.11)

where

SST =
n∑

i=1

(Yi − Ȳ )2

SSR =

n∑

i=1

(Ŷi − Ȳ )2

SSE =
n∑

i=1

(Yi − Ŷi)
2
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Proof.

SST =
n∑

i=1

(Yi − Ȳ )2 =
n∑

i=1

[(Yi − Ŷi) + (Ŷi − Ȳ )]2

=

n∑

i=1

[(Yi − Ŷi)
2 + (Ŷi − Ȳ )2 + 2(Yi − Ŷi)(Ŷi − Ȳ )]

= SSE + SSR + 2A,

where

A =
n∑

i=1

(Yi − Ŷi)(Ŷi − Ȳ )

=

n∑

i=1

(Yi − Ŷi)Ŷi − Ȳ

n∑

i=1

(Yi − Ŷi)

=

n∑

i=1

eiŶi − Ȳ

n∑

i=1

ei

︸ ︷︷ ︸
=0

=

n∑

i=1

ei(β̂0 + β̂1xi)

= β̂0

n∑

i=1

ei

︸ ︷︷ ︸
=0

+ β̂1

n∑

i=1

eixi

︸ ︷︷ ︸
=0

.

HenceA = 0.
�

For a given data set the model fit (regression) sum of squares,SSR, represents the
variability in the observationsyi accounted for by the fitted model, the residual
sum of squares,SSE, represents the variability inyi accounted for by the differ-
ences between the observations and the fitted values.

The Analysis of Variance (ANOVA) Table shows the sources of variation, the
sums of squares and the statistic, based on the sums of squares, for testing the
significance of regression slope.

ANOVA table

Source of variation d.f. SS MS VR
Regression νR = 1 SSR MSR = SSR

νR

MSR

MSE

Residual νE = n− 2 SSE MSE = SSE

νE

Total νT = n− 1 SST
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The “d.f.” is short for “degrees of freedom”.

What are degrees of freedom?

For an intuitive explanation consider the observationsy1, y2, . . . , yn and assume
that their sum is fixed, say equal toa, that is

y1 + y2 + . . .+ yn = a.

For a fixed value of the suma there aren− 1 arbitraryy-values but oney-value is
determined by the difference ofa and then− 1 arbitraryy values. This one value
is not free, it depends on the othery-values an ona. We say, that there aren − 1
independent (free to vary) pieces of information and one piece is taken up bya.

Estimates of parameters can be based upon different amountsof information. The
number of independent pieces of information that go into theestimate of a param-
eter is called the degrees of freedom. This is why in order to calculate

SST =

n∑

i=1

(yi − ȳ)2

we haven − 1 free to vary pieces of information from the collected data, that is
we haven − 1 degrees of freedom. The one degree of freedom is taken up byȳ.
Similarly, for

SSE =
n∑

i=1

(yi − ŷi)
2 =

n∑

i=1

(yi − β̂0 − β̂1xi)
2

we have two degrees of freedom taken up: one byβ̂0 and one byβ̂1 (both depend
on y1, y2, . . . , yn). Hence, there aren − 2 independent pieces of information to
calculateSSE.

Finally, asSSR = SST − SSE we can calculate the d.f. forSSR as a difference
between d.f. forSST and forSSE , that isνR = (n− 1)− (n− 2) = 1.

In the ANOVA table there are also included so calledMean Squares (MS), which
can be thought of as measures of average variation.

The last column of the table contains theVariance Ratio (VR)

MSR

MSE

.

It measures the variation explained by the model fit relativeto the variation due to
residuals.
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2.4.2 F test

The mean squares are function of random variablesYi and so is their ratio. We
denote it byF . We will see later, that ifβ1 = 0, then

F =
MSR

MSE

∼ F1,n−2.

Thus, to test the null hypothesis

H0 : β1 = 0

versus the alternative
H1 : β1 6= 0,

we use the variance ratioF as the test statistic. UnderH0 the ratio hasF distri-
bution with 1 andn− 2 degrees of freedom.

We rejectH0 at a significance levelα if

Fcal > Fα;1,n−2,

whereFcal denotes the value of the variance ratioF calculated for a given data set
andFα;1,n−2 is such that

P (F > Fα;1,n−2) = α.

There is no evidence to rejectH0 if Fcal < Fα;1,n−2.

RejectingH0 means that the slopeβ1 6= 0 and the full regression model

Yi = β0 + β1xi + εi

is better then the constant model

Yi = β0 + εi.


