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2.2 Least Squares Estimation

Estimation is a method of finding values of the unknown modedmeters for a
given data set so that the model fits the data in a “best” wagré& are various
estimation methods, depending on how do we define “best”higgection we
consider theMethod of Least Squares Estimatiofi.S or LSE).

ThelLS estimatorof the model parameter and5; minimize the sum of squares
of errors denoted by (5, 52). That is, the estimators minimize

S(Bo, 1) 26 = Z — (Bo + Brzy))* (2.2)

The “best” here means the smallest valueS¢f,, 5,1). S is a function of the
parameters and so to find its minimum we differentiate it wébpect to3, and
51, then equate the derivatives to zero. We have

55 = —2 1 0+ brr;
{ 2 S = (Bo + Buai)] 03

a_gl = =23, [Yi = (Bo + Buwi)]w;
When compared to zero we obtain so calhedmal equations:

S (Bo + Bui) = S0 Y

JE (2.4)
> i1 (Bo+ Brzi)x = 20 1:Ys

This set of equations can be written as

{ nBo+ B S =S Y, (2.5)

BOZz 1$z+ﬁ12 1952 _Z?:lxiy;

The solutions to these equations are

i=1 " (2.6)
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and, from the second normal equation

B\l _ Do TiYi — %(27:1 ;) (32, Ya)
D1 T — %(27:1 ;)?
_ Yoz —2)(Yi=Y) (2.7)
> ic (T — )2

where .
Sov =Y (i —2)(Yi=Y), Sea=) (1, —2)"
i=1 i=1

To check thatS( 5y, 51) attains a minimum a(tB\O, 31) we calculate second deriva-
tives and evaluate the determinant

928 as
95 BPBob 2n 2y 0w \ n ( s
= =4n E xr; — ) >
as 928 n , no.2 —
9B1Bo 8_5% 2 Zi:l T 2 ZiZI 'ri =1

for all 3y, 5, (it does not depend on the parameters).

Also, g%*oi >0 (andg%? > 0) for all By, 8;. This means that the functic®( 3, ;)

attains a minimum a(l;BAO, BAl) given by (2.6) and (2.7).

Remark 2.1 Note that the estimators depend¥dnThey are functions of which
is a random variable and so the estimators of the model paeasnare random
variables too. When we calculate the values of the estimdbom given data set,
i.e. for observedralues ofY” at given values ofX, we obtain so calledstimates
of the parameters. We may obtain different estimate$, @nd 3, calculated for
different data sets fitted by the same kind of model. 0

Example 2.3, (Wing'’s length cont.)
For the given data in Example 2.1 we obtain

13 13
Zyi =441, Zx = 124.
=1 i=1

13 13
D iy =4883, ) af = 1418,
=1 =1
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Hence, the estimates of the model parameters are

31 _ Z?:l TilYi — %(Z?:l fz)(ZL Yi)
D i v %(Z?:l ;)
488.3 — 15 x 124 x 44.1
TR - L 124

= 0.28761

—~ ~ 1 1
Bo=7— T = 3 44.1 — 0.28761 x 3 124 = 0.649
and the estimated (fitted) linear model is
7; = 0.649 + 0.288x;.
From this fitted model we may calculate values of the wing’'sytl of sparrows
for any age within the used age interval. For example, we rignate the wing'’s
length of sparrows of age 7 days (the missing value). Itis

y; = 0.649 + 0.288 x 7 = 2.664 cm.

MINITAB
| Calc— Calculator.. | -

Remark 2.2 Two special cases of the simple linear model are

e no-intercept model
Y = pii + &,
which implies thatt(Y'| X = 0) = 0, and
e constant model

}/;:50+5i7

which implies that the response variableloes not depend on the explana-
tory variableX. 0
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2.3 Properties of the Estimators

Definition 2.1. If 6 is an estimator of ¢ and E[@] — 0, then we say 6 is unbiased
for 6.

Note that in this definitiod is a random variable. We must distinguish between
0 when it is an estimate and when it is an estimator. As a funaifdhe random
variablesy; it is an estimator. Its value obtained for a given data ses€oledy;)

is an estimate.

The parameter estimat@r can be written as

n —

~ T, — X T, — T
Br=> ¢Y;, wherec = —— — == (2.8)
; > iz (@i — @) Sz
We have assumed that, Y5, ..., Y,, are normally distributed and hence using

the result that a linear combination of normal random véesis also a normal
random variablef, is also normally distributed. We now derive the mean and
variance off; using the representation (2.8).
EB)] = E))_ &Y
=1

= ¢ B[Y]]
1

(2

)=

ci(Bo + Prr;)

2

1
n n
= BOZCi +31ZCZ‘«%’¢
i=1 i=1

but> ¢; = 0andY ciz; = 1 as>(z; — )x; = Syp, SOE[B] = B1. Thusp, is
unbiased fors;. Also

~

var[f;] = var

n
E ¢iY;
i=1

n

= ) cvar[Yj] since ther’s are independent
=1

= ZUQ(xi - j)Q/[SM]Q

= 0?/S.a.
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Hence,

~ 0'2

ﬁl ~ N (617 S—m) .
Similarly it can be shown that

~ 1 72
(a2 2])

2.4 Assessing the Model

2.4.1 Analysis of Variance Table

Parameter estimates obtained for the model
Y, = Bo+ Bz + €

can be used to estimate the mean response correspondirgntesgbleY;, that
is,

—

E(Yi):ﬁ:go—kglxi, 1=1,...,n.

These, for a given data set;, y;), are calleditted valuesand are denoted hy.
They are points on thétted regression linecorresponding to the values of.
The observed valueg usually do not fall exactly on the line and so are not equal
to the fitted valueg;, as it is shown in Figure 2.5.

Theresiduals(also called crude residuals) are defined as
e =Y—Y:, i=1,....,n, (2.9)
These are estimators of the random eregrs

Thus

e = Yz‘—(@)‘FﬂAﬂi)
= Y;_Y_B\l(xi_j)'

and

Zei:O.
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Figure 2.5: Observations and fitted line for the Sparrow vgitength data.

Also note that the estimato;(% and 51 minimize the functionS(5y, 51). The
minimum is called th&kesidual Sum of Squareand is denoted by Sg, that is,

n n

SSp = _IVi— (Bo+ fuwl* =3 (Vi =¥’ =} el (2.10)

i=1 i=1

Consider the constant model
Y, = B + e

For this model3, = Y and we have
Y=Y, e=Y,-Y,=Y,-Y

and

SSp =88 =Y (Y;-Y).

i=1

It is called theTotal Sum of Squaresnd is denoted by .S. For a constant model
SSE = SSr. When the model is non constant, i.e. there is a significanuesl

the difference’; — Y can be split into two components: one due to the regression
model fit and one due to the residuals, that is

~ A~

S QS 1 B A )
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Figure 2.6: Observations, fitted line and the mean for a eonishodel.

For a given data set it could be represented as in Figure 2.6.

The following theorem gives such an identity for the respectums of squares.

Theorem 2.1. Analysis of Variance | dentity.
In the simple linear regression model the total sum of squares is a sum of the
regression sum of squares and the residual sum of squares, that is

SSy = SSp + SSk, (2.11)

where

SSp = Y (Yi—Y)’
SSp = > (Y;-Y)?

SSp = Y (Yi-Y)?
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Proof.
S8, — Z(}g V2= Z[(K- ~Y) + (Y, - Y)P

= SV =T+ (V= V)42, - V) (¥, = V)]

= SSgp+ SSg+2A,
where

= Z ei(Bo + Prs)
i=1

i=1

i=1
~—— ——
=0 =0

HenceA = 0. O

For a given data set the model fit (regression) sum of squéfgg,represents the
variability in the observationg; accounted for by the fitted model, the residual
sum of squares§ Sg, represents the variability iy accounted for by the differ-
ences between the observations and the fitted values.

The Analysis of Variance (ANOVA) Table shows the sources afiation, the
sums of squares and the statistic, based on the sums of sgt@réesting the
significance of regression slope.

ANOVA table
Source of variation d.f. SS MS VR
: SS MS
Regression vp =1 SSr MSg = ?ff o
Residual vg=n—2 SSp MSy=22E

Total vp=n—1 SSr
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The “d.f.” is short for “degrees of freedom”.

| What are degrees of freedom?

For an intuitive explanation consider the observatigngs, . . ., v, and assume
that their sum is fixed, say equaldothat is

Yyi+ty2+...+ Y =a.

For a fixed value of the sumthere are: — 1 arbitraryy-values but ong-value is
determined by the difference afand then — 1 arbitraryy values. This one value
is not free, it depends on the othewalues an om.. We say, that there are— 1
independent (free to vary) pieces of information and oneeis taken up by.

Estimates of parameters can be based upon different ammfunfsrmation. The
number of independent pieces of information that go intaettenate of a param-
eter is called the degrees of freedom. This is why in ordeatoutate

n

SSr =Y (y:—7)°

i=1
we haven — 1 free to vary pieces of information from the collected dalat tis

we haven — 1 degrees of freedom. The one degree of freedom is taken gp by
Similarly, for

n n

SSp =3 (yi—7)? = (yi— o~ Biz)?

i=1 i=1

we have two degrees of freedom taken up: on&bynd one b}ﬁi (both depend
onyi, vy, ...,Yn). Hence, there are — 2 independent pieces of information to
calculateSSg.

Finally, asSSr = SSr — SSg we can calculate the d.f. f&'Sy as a difference
between d.f. fol5.Sy and forSSg, thatisvg = (n — 1) — (n — 2) = 1.

In the ANOVA table there are also included so calMdan Squares (MS)which
can be thought of as measures of average variation.

The last column of the table contains tWi&riance Ratio (VR)
MSg
MSg

It measures the variation explained by the model fit relativibe variation due to
residuals.
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2.4.2 F test

The mean squares are function of random variablesnd so is their ratio. We
denote it byF'. We will see later, that iff; = 0, then

 MSp

F =
MSg

~ fl,n—?-

Thus, to test the null hypothesis
HO : 61 =0

versus the alternative
H1 . 61 7£ O,

we use the variance ratib as the test statistic. Undéf, the ratio hasF distri-
bution with 1 and» — 2 degrees of freedom.

We rejectH, at a significance level if
Fcal > Fa;l,n—?;

wherefF,, denotes the value of the variance raicalculated for a given data set
andF,.1 ,—2 is such that

P(F > Foin-2) = .
There is no evidence to rejetl, if F.,; < Fo.1n—2.
RejectingH, means that the slopg # 0 and the full regression model
Y; = Bo + Prwi + &
is better then the constant model

Y; =P + e



