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2.4.3 Estimatingo?

Note that the sums of squares are functions of the condltramaom variables

Y; = (Y|X = z;). Hence, the sums of squares are random variables as wedl. Thi
fact allows us to check some stochastic properties of thessifrequares, such as
their expectation, variance and distribution.

Theorem 2.2.In the full simple linear regression model we have
E(SSg) = (n —2)0?

Proof. Proof will be given later. 0

From the theorem we obtain

1
n—2

E(MSg) =E < SSE> = o?

and soM Sg is an unbiased estimator of. It is often denoted by?.

Notice, that in the full mode$? is not the sample variance. We have

LS —BY)?, whereB(Y) = fy + i

i=1

S*=MSp =

n—2

It is the sample variance in the constant (null) model, WI’JEE\) = By =Y and
vp =n— 1. Then

2.4.4 Coefficient of Determination

The coefficient of determination, denoted By, is the percentage of total varia-
tion in the data explained by the fitted model, that is

Note:
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e R% e [0,100].

e R? = ( indicates that none of the variability in the response idarpd by
the regression model.

e R? =100 indicates thas.S; = 0 and all observations fall on the fitted line
exactly.

A small value of?? does not always imply a poor relationship betw&eand X,
which may, for example, follow another model.

2.4.5 Minitab Example

Example 2.4. Sparrow Wings continued

Fitted Line Plot
y = 07968 + 0.2646 x

= 0209607
R-5q 9769
R-Sal adi) 97.4%%

Figure 2.7: Fitted line plot for Sparrow Wings

The regression equation is
y = 0.787 + 0.265 x

Pr edi ct or Coef SE Coef T P
Const ant 0. 7868 0. 1368 5.75 0.000
X 0.26463 0.01258 21.04 0.000
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S = 0.209607 R Sq = 97.6% R-Sq(adj) = 97.4%

Anal ysi s of Variance

Sour ce DF SS (VS F P
Regr essi on 1 19. 446 19. 446 442.60 0.000
Resi dual Error 11 0. 483 0. 044

Tot al 12 19. 929

Comments:

We fitted a simple linear model of the form
K:ﬁo—i_ﬁlxi_'_gia izlu"'7137 8Zr\:iN(O71)
The estimated values of the parameters are
- intercept: 4, = 0.79
- slope:3; = 0.26
Both parameters are highly significapt<{ 0.001).

The ANOVA table also shows the significance of the regres@lmpe), that is the
null hypothesis
Hy:6,=0
versus the alternative
Hy: 51 #0
can be rejected on the significance lewet 0.001 (p = 0.000).

The tests require the assumptions of the normality and o$teon variance of
random errors. It should be checked whether the assumgirenspproximately
met. If not, the tests may not be valid.

The value ofR? is very high, i.e.,R? = 97.6. It means that the fitted model
explains the variability in the observed responses very. wel

The graph shows that the observations lie along the fittexldimd there are no
strange points which are far from the line or which couldrsgly affect the slope.

Final conclusions:

We can conclude that the data indicate that the length of®patrwings depends
linearly on their age (within the range 3 - 18 days). The mesmmease in the
wing’s length per day is estimated as= 0.26 cm.

However, it might be wrong to predict the length or its inaeg@er day outside
the range of the observed time. We would expect that the greletvs down in
time and so the relationship becomes non-linear. 0
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2.5 Residuals

2.5.1 Crude Residuals

In Section 2.4.1 we defined the residuals as

A~

e; =Y, =Y,

These are often calledtude residuals. We have

e = Yi—(@)+3\1$i)
Y, — (V- 31973) ~ Bz
= Yi—Y—BAl(l’i—i’)-

We also have seen that .
Z €; = 0.
i=1
Now the question is what is the expectation and the variahceude residuals?
The mean of théth residual is
Ele;] = E[Y; - 5\0 - B\ﬂz]
= E[Y)] - E[fo] — z:E[3]

= Bo+ Bixi — Bo — P
= 0.

The variance is given by

1 (v —17)°

var[e;] = o {1 — (5 + Tm)] = 0*(1 — hyy),

which can be shown by writing; as a linear combination of thé’s. Note that it
depends on, that is the variance af; is not constant, unlike that ef. Similarly
it can be shown that the covariance of two residuabnde; is

1 (z;—2)(x; —T)
covle;, e;] = —o? [E + Sxx]

:| = _U2hij-

We know thatvar[e;] = o andcov(e;, ¢;] = 0. So the crude residuats do not
guite mimic the properties af,.
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() (b)

Figure 2.8: (a) No problem apparent (b) Clear non-linearity
2.5.2 Standardized/Studentized Residuals

To standardize a random variable we subtract its mean adkeddy its standard
error. Hence, to standardize residuals we calculate

€; — E(@Z) B €;

d; = = .
v/ varg; 0'2(1 — hu)

Then

They are not independent, though for large samples the labae should be
small.

However, we do not know?. If we replaces? by S? we get the so callegtuden-
tized residuals (in Minitab they are called standardized residuals),

€;
TS0 —h)

For large samples they will approximate the standéard

2.5.3 Residual plots

Shapes of various residual plots can show whether the madehaptions are
approximately met.

To check linearity, we plot; againstr;, as it is shown in Figure 2.8.
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To check the assumption of constant variance (homosceitgstive plotr; against
the fitted valueg;, as it is shown in Figure 2.9. This plot can also indicate \Wwaet
the assumption of model linearity is approximately satikfie

(@)

(b)

Figure 2.9: (a) No problem apparent (b) Variance increas¢seamean response

increases

To check whether the distribution of the residuals followsyenmetric shape of
the normal distribution we can draw so callddrmal Probability Plot. It plots

each value of ordered residuals vs. the percentage of vialtles sample that are
less than or equal to it, along a fitted distribution line. Boales are transformed
so that the fitted distribution forms a straight line. A ploat departs substantially
from linearity suggests that the error distribution is notmal as shown in plots

2.10-2.13.

Histogram of values simulated from a standard normal distriution
Normal

25

20

T 15
L

i 10

Probability Plot of values simulated from standard normal distribution
Normal

Ordered values

(@)

(b)

Figure 2.10: (a) Histogram of data simulated from standamn@al distribution,
(b) Normal Probability Plot, no problem apparent.
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Histogram of simulated values from a LogNormal distribution Probability Plot for values simulated from a LogNormal distribution
Normal Normal

w . Mean 1.566 99.9 Mean 1.566
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(a) (b)
Figure 2.11:(a) Histogram of data simulated from a Log-normal distiiit (b) Normal
Probability Plot indicates skewness of the distribution.

Histogram of values simulated from a beta distribution Probability Plot of values simulated from a beta distribution
Normal Normal
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(@) (b)
Figure 2.12:(a) Histogram of data simulated from a Beta distributior),Nbrmal Prob-
ability Plot indicates light tails.

Histogram of simulated values from a t-student distribution Probability Plot of simulated values from t-student distribution
Normal Normal
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(a) (b)
Figure 2.13:(a) Histogram of data simulated from a Student t-distridouti(b) Normal
Probability Plot indicates heavy tails.
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2.6 Inference about the regression parameters

Example 2.5. Overheads.

A company builds custom electronic instruments and comma®ponents. All

jobs are manufactured to customer specifications. The firmsa@ be able to
estimate its overhead cost. As part of a preliminary ingesiton, the firm decides
to focus on a particular department and investigates tladioakhip between total
departmental overhead cost (Y) and total direct labor h{XiysThe data for the

most recent 16 months are plotted in Figure 2.14.

Two objectives of this investigation are
1. to summarize for management the relationship betweahdepartmental
overhead and total direct labor hours.

2. to estimate the expected and to predict the actual tofartleental over-
head from the total direct labor hours.

Fitted Line Plot
¥y= 16310 + 10.98 x

5 1645.61
R-Sg 2.6%
R-Sgladj}  €0.0%
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Figure 2.14: Plot of overheads data

The regression equation is
Ovhd = 16310 + 11.0 Labor

Pr edi ct or Coef SE Coef T P
Const ant 16310 2421 6.74 0. 000
Labor 10.982 2.268 4.84 0. 000

S =1645.61 R-Sq = 62.6% R-Sq(adj) = 60.0%
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Anal ysi s of Variance

Sour ce DF SS MS F P
Regr essi on 1 63517077 63517077 23.46 0.000
Residual Error 14 37912232 2708017

Tot al 15 101429309

Unusual Observati ons
Obs Labor Ovhd Fit SE Fit Residual St Resid
6 1067 24817 28028 413 -3211 -2.02R

R denotes an observation with a |arge standardi zed resi dual .

Comments:

e The model fit isy; = 16310 + 11z;. There is a significant relationship
between the overheads and the labor hoprs ().001 in ANOVA).

e The increase of labor hours by 1 will increase the mean oeeihby about
£11 (B, = 11.0).

e There is rather large variability in the data; the perceataittotal variation
explained by the model is rather smaliy(= 62.6).

The model allows us to estimate the total overhead cost ascidn of labour

hours, but as we noticed, there is large variability in theaddn such a case,
the point estimates may not be very reliable. Anyway, postineates should
always be accompanied by their standard errors. Then wdsafirad confidence
intervals (CI) for the unknown model parameters, or test then-significances,

Note that for the simple linear regression model

Yi = po+ Bz + &, Whereg; ~ N(0,0%), (2.13)

we obtained the following LSE of the parametggsand 3
Y - Bz
XL i =)

> iy (7 — 7)?

We now derive results which allow us to make inference abbetregression
parameters and predictions.

Bo

)
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2.6.1 Inference abouts;

We proved the following result in Section 2.3.

Theorem 2.3.In the full simple linear model (SLM) the distribution of the LSE of
B1, A1, isnormal with the expectation E(,) = 5; and thevariancevar(5;) = <,
thatis -

. 2
pi~N (ﬁl, g—) : (2.14)

rx

OJ

Remark 2.3 For large samples, where there is no assumption of nornlity,
the sampling distribution af; is approximately normal. O

Theorem 2.3 allows us to derive a confidence interval (Cl)doand a test of
non-significance fop,;. After standarisation of; we obtain

B — By
WﬂENN@n

However, the error variance is usually not known and it isaegd by its estimator.
Then the normal distribution changes to a Studethistribution. The explanation
is following.

Lemma2.1.1f Z ~ N(0,1)and U ~ x?, and Z and U are independent, then

Here we have, R
_B-B
0/ Sex

(n —2)S?

2
9 ~ Xn—2

Z

N(0,1).

We will see later that
U=

o

andS? andgl are independent. It follows that
Bi-p ~
T N _bBi=b6 .
(n—2)S2 S/\/ Sam e

2 (n—2)

(2.15)



