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2.4.3 Estimatingσ2

Note that the sums of squares are functions of the conditional random variables
Yi = (Y |X = xi). Hence, the sums of squares are random variables as well. This
fact allows us to check some stochastic properties of the sums of squares, such as
their expectation, variance and distribution.

Theorem 2.2. In the full simple linear regression model we have

E(SSE) = (n− 2)σ2

Proof. Proof will be given later.
�

From the theorem we obtain

E(MSE) = E

(
1

n− 2
SSE

)
= σ2

and soMSE is an unbiased estimator ofσ2. It is often denoted byS2.

Notice, that in the full modelS2 is not the sample variance. We have

S2 = MSE =
1

n− 2

n∑

i=1

(Yi − Ê(Yi))
2, whereÊ(Yi) = β̂0 + β̂1xi.

It is the sample variance in the constant (null) model, wherêE(Yi) = β̂0 = Ȳ and
νE = n− 1. Then

S2 =
1

n− 1

n∑

i=1

(Yi − Ȳ )2.

2.4.4 Coefficient of Determination

The coefficient of determination, denoted byR2, is the percentage of total varia-
tion in the data explained by the fitted model, that is

R2 =
SSR

SST
100% =

SST − SSE

SST
100% =

(
1− SSE

SST

)
100%. (2.12)

Note:
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• R2 ∈ [0, 100].

• R2 = 0 indicates that none of the variability in the response is explained by
the regression model.

• R2 = 100 indicates thatSSE = 0 and all observations fall on the fitted line
exactly.

A small value ofR2 does not always imply a poor relationship betweenY andX,
which may, for example, follow another model.

2.4.5 Minitab Example

Example 2.4. Sparrow Wings continued

Figure 2.7: Fitted line plot for Sparrow Wings

The regression equation is
y = 0.787 + 0.265 x

Predictor Coef SE Coef T P
Constant 0.7868 0.1368 5.75 0.000
x 0.26463 0.01258 21.04 0.000
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S = 0.209607 R-Sq = 97.6% R-Sq(adj) = 97.4%

Analysis of Variance
Source DF SS MS F P
Regression 1 19.446 19.446 442.60 0.000
Residual Error 11 0.483 0.044
Total 12 19.929

Comments:
We fitted a simple linear model of the form

Yi = β0 + β1xi + εi, i = 1, . . . , 13, εi ∼
iid

N (0, 1).

The estimated values of the parameters are
- intercept:β̂0

∼= 0.79
- slope:β̂1

∼= 0.26
Both parameters are highly significant (p < 0.001).

The ANOVA table also shows the significance of the regression(slope), that is the
null hypothesis

H0 : β1 = 0

versus the alternative
H1 : β1 6= 0

can be rejected on the significance levelα < 0.001 (p ∼= 0.000).

The tests require the assumptions of the normality and of constant variance of
random errors. It should be checked whether the assumptionsare approximately
met. If not, the tests may not be valid.

The value ofR2 is very high, i.e.,R2 = 97.6. It means that the fitted model
explains the variability in the observed responses very well.

The graph shows that the observations lie along the fitted line and there are no
strange points which are far from the line or which could strongly affect the slope.

Final conclusions:
We can conclude that the data indicate that the length of sparrows’ wings depends
linearly on their age (within the range 3 - 18 days). The mean increase in the
wing’s length per day is estimated aŝβ1

∼= 0.26 cm.

However, it might be wrong to predict the length or its increase per day outside
the range of the observed time. We would expect that the growth slows down in
time and so the relationship becomes non-linear.

�
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2.5 Residuals

2.5.1 Crude Residuals

In Section 2.4.1 we defined the residuals as

ei = Yi − Ŷi.

These are often calledcrude residuals. We have

ei = Yi − (β̂0 + β̂1xi)

= Yi − (Ȳ − β̂1x̄)− β̂1xi

= Yi − Ȳ − β̂1(xi − x̄).

We also have seen that
n∑

i=1

ei = 0.

Now the question is what is the expectation and the variance of crude residuals?

The mean of theith residual is

E[ei] = E[Yi − β̂0 − β̂1xi]

= E[Yi]−E[β̂0]− xiE[β̂1]

= β0 + β1xi − β0 − β1xi

= 0.

The variance is given by

var[ei] = σ2

[
1−

(
1

n
+

(xi − x̄)2

Sxx

)]
= σ2(1− hii),

which can be shown by writingei as a linear combination of theYi’s. Note that it
depends oni, that is the variance ofei is not constant, unlike that ofεi. Similarly
it can be shown that the covariance of two residualsei andej is

cov[ei, ej] = −σ2

[
1

n
+

(xi − x̄)(xj − x̄)

Sxx

]
= −σ2hij .

We know thatvar[εi] = σ2 andcov[εi, εj] = 0. So the crude residualsei do not
quite mimic the properties ofεi.
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(a) (b)

Figure 2.8: (a) No problem apparent (b) Clear non-linearity

2.5.2 Standardized/Studentized Residuals

To standardize a random variable we subtract its mean and divide by its standard
error. Hence, to standardize residuals we calculate

di =
ei − E(ei)√

var ei
=

ei√
σ2(1− hii)

.

Then
di ∼ N (0, 1).

They are not independent, though for large samples the correlation should be
small.

However, we do not knowσ2. If we replaceσ2 by S2 we get the so calledstuden-
tized residuals (in Minitab they are called standardized residuals),

ri =
ei√

S2(1− hii)
.

For large samples they will approximate the standarddi.

2.5.3 Residual plots

Shapes of various residual plots can show whether the model assumptions are
approximately met.

To check linearity, we plotri againstxi, as it is shown in Figure 2.8.
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To check the assumption of constant variance (homoscedasticity), we plotri against
the fitted valueŝyi, as it is shown in Figure 2.9. This plot can also indicate whether
the assumption of model linearity is approximately satisfied.

(a) (b)

Figure 2.9: (a) No problem apparent (b) Variance increases as the mean response
increases

To check whether the distribution of the residuals follows asymmetric shape of
the normal distribution we can draw so calledNormal Probability Plot. It plots
each value of ordered residuals vs. the percentage of valuesin the sample that are
less than or equal to it, along a fitted distribution line. Thescales are transformed
so that the fitted distribution forms a straight line. A plot that departs substantially
from linearity suggests that the error distribution is not normal as shown in plots
2.10 - 2.13.

(a) (b)
Figure 2.10: (a) Histogram of data simulated from standard normal distribution,
(b) Normal Probability Plot, no problem apparent.
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(a) (b)
Figure 2.11:(a) Histogram of data simulated from a Log-normal distribution, (b) Normal
Probability Plot indicates skewness of the distribution.

(a) (b)
Figure 2.12:(a) Histogram of data simulated from a Beta distribution, (b) Normal Prob-
ability Plot indicates light tails.

(a) (b)
Figure 2.13:(a) Histogram of data simulated from a Student t-distribution, (b) Normal
Probability Plot indicates heavy tails.
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2.6 Inference about the regression parameters

Example 2.5. Overheads.
A company builds custom electronic instruments and computer components. All
jobs are manufactured to customer specifications. The firm wants to be able to
estimate its overhead cost. As part of a preliminary investigation, the firm decides
to focus on a particular department and investigates the relationship between total
departmental overhead cost (Y) and total direct labor hours(X). The data for the
most recent 16 months are plotted in Figure 2.14.

Two objectives of this investigation are

1. to summarize for management the relationship between total departmental
overhead and total direct labor hours.

2. to estimate the expected and to predict the actual total departmental over-
head from the total direct labor hours.

Figure 2.14: Plot of overheads data

The regression equation is
Ovhd = 16310 + 11.0 Labor

Predictor Coef SE Coef T P
Constant 16310 2421 6.74 0.000
Labor 10.982 2.268 4.84 0.000

S = 1645.61 R-Sq = 62.6% R-Sq(adj) = 60.0%
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Analysis of Variance
Source DF SS MS F P
Regression 1 63517077 63517077 23.46 0.000
Residual Error 14 37912232 2708017
Total 15 101429309

Unusual Observations
Obs Labor Ovhd Fit SE Fit Residual St Resid
6 1067 24817 28028 413 -3211 -2.02R

R denotes an observation with a large standardized residual.

Comments:

• The model fit isŷi = 16310 + 11xi. There is a significant relationship
between the overheads and the labor hours (p < 0.001 in ANOVA).

• The increase of labor hours by 1 will increase the mean overheads by about
£11 (β̂1 = 11.0).

• There is rather large variability in the data; the percentage of total variation
explained by the model is rather small (R2 = 62.6).

The model allows us to estimate the total overhead cost as a function of labour
hours, but as we noticed, there is large variability in the data. In such a case,
the point estimates may not be very reliable. Anyway, point estimates should
always be accompanied by their standard errors. Then we can also find confidence
intervals (CI) for the unknown model parameters, or test their non-significance.

�

Note that for the simple linear regression model

Yi = β0 + β1xi + εi, whereεi ∼
iid

N(0, σ2), (2.13)

we obtained the following LSE of the parametersβ0 andβ1:

β̂0 = Ȳ − β̂1x̄

β̂1 =

∑n
i=1(xi − x̄)(Yi − Ȳ )∑n

i=1(xi − x̄)2

We now derive results which allow us to make inference about the regression
parameters and predictions.
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2.6.1 Inference aboutβ1

We proved the following result in Section 2.3.

Theorem 2.3. In the full simple linear model (SLM) the distribution of the LSE of
β1, β̂1, is normal with the expectation E(β̂1) = β1 and the variance var(β̂1) =

σ2

Sxx

,
that is

β̂1 ∼ N

(
β1,

σ2

Sxx

)
. (2.14)

�

Remark 2.3. For large samples, where there is no assumption of normalityof Yi,
the sampling distribution of̂β1 is approximately normal.

�

Theorem 2.3 allows us to derive a confidence interval (CI) forβ1 and a test of
non-significance forβ1. After standarisation of̂β1 we obtain

β̂1 − β1

σ/
√
Sxx

∼ N (0, 1).

However, the error variance is usually not known and it is replaced by its estimator.
Then the normal distribution changes to a Studentt-distribution. The explanation
is following.

Lemma 2.1. If Z ∼ N(0, 1) and U ∼ χ2
ν , and Z and U are independent, then

Z√
U/ν

∼ tν .

�

Here we have,

Z =
β̂1 − β1

σ/
√
Sxx

∼ N (0, 1).

We will see later that

U =
(n− 2)S2

σ2
∼ χ2

n−2

andS2 andβ̂1 are independent. It follows that

T =

β̂1−β1

σ/
√

Sxx√
(n−2)S2

σ2(n−2)

=
β̂1 − β1

S/
√
Sxx

∼ tn−2. (2.15)


