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2.6 Inference about the regression parameters

Example 2.5. Overheads.
A company builds custom electronic instruments and computer components. All
jobs are manufactured to customer specifications. The firm wants to be able to
estimate its overhead cost. As part of a preliminary investigation, the firm decides
to focus on a particular department and investigates the relationship between total
departmental overhead cost (Y) and total direct labor hours(X). The data for the
most recent 16 months are plotted in Figure 2.14.

Two objectives of this investigation are

1. to summarize for management the relationship between total departmental
overhead and total direct labor hours.

2. to estimate the expected and to predict the actual total departmental over-
head from the total direct labor hours.

Figure 2.14: Plot of overheads data

The regression equation is
Ovhd = 16310 + 11.0 Labor

Predictor Coef SE Coef T P
Constant 16310 2421 6.74 0.000
Labor 10.982 2.268 4.84 0.000

S = 1645.61 R-Sq = 62.6% R-Sq(adj) = 60.0%
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Analysis of Variance
Source DF SS MS F P
Regression 1 63517077 63517077 23.46 0.000
Residual Error 14 37912232 2708017
Total 15 101429309

Unusual Observations
Obs Labor Ovhd Fit SE Fit Residual St Resid
6 1067 24817 28028 413 -3211 -2.02R

R denotes an observation with a large standardized residual.

Comments:

• The model fit isŷi = 16310 + 11xi. There is a significant relationship
between the overheads and the labor hours (p < 0.001 in ANOVA).

• The increase of labor hours by 1 will increase the mean overheads by about
£11 (β̂1 = 11.0).

• There is rather large variability in the data; the percentage of total variation
explained by the model is rather small (R2 = 62.6).

The model allows us to estimate the total overhead cost as a function of labour
hours, but as we noticed, there is large variability in the data. In such a case,
the point estimates may not be very reliable. Anyway, point estimates should
always be accompanied by their standard errors. Then we can also find confidence
intervals (CI) for the unknown model parameters, or test their non-significance.

�

Note that for the simple linear regression model

Yi = β0 + β1xi + εi, whereεi ∼
iid

N(0, σ2), (2.13)

we obtained the following LSE of the parametersβ0 andβ1:

β̂0 = Ȳ − β̂1x̄

β̂1 =

∑n
i=1(xi − x̄)(Yi − Ȳ )∑n

i=1(xi − x̄)2

We now derive results which allow us to make inference about the regression
parameters and predictions.
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2.6.1 Inference aboutβ1

We proved the following result in Section 2.3.

Theorem 2.3. In the full simple linear regression model (SLRM) the distribution
of the LSE of β1, β̂1, is normal with the expectation E(β̂1) = β1 and the variance
var(β̂1) =

σ2

Sxx

, that is

β̂1 ∼ N

(
β1,

σ2

Sxx

)
. (2.14)

�

Remark 2.3. For large samples, where there is no assumption of normalityof Yi,
the sampling distribution of̂β1 is approximately normal.

�

Theorem 2.3 allows us to derive a confidence interval (CI) forβ1 and a test of
non-significance forβ1. After standarisation of̂β1 we obtain

β̂1 − β1

σ/
√
Sxx

∼ N (0, 1).

However, the error variance is usually not known and it is replaced by its estimator.
Then the normal distribution changes to a Studentt-distribution. The explanation
is following.

Lemma 2.1. If Z ∼ N(0, 1) and U ∼ χ2
ν , and Z and U are independent, then

Z√
U/ν

∼ tν .

�

Here we have,

Z =
β̂1 − β1

σ/
√
Sxx

∼ N (0, 1).

We will see later that

U =
(n− 2)S2

σ2
∼ χ2

n−2

andS2 andβ̂1 are independent. It follows that

T =

β̂1−β1

σ/
√
Sxx√

(n−2)S2

σ2(n−2)

=
β̂1 − β1

S/
√
Sxx

∼ tn−2. (2.15)
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Confidence interval for β1

To find a CI for an unknown parameterθ means to find values of the boundaries
A andB which satisfy

P (A < θ < B) = 1− α

for some smallα, that is for a high confidence level(1 − α)100%. From (2.15)
we have

P

(
−tα

2
,n−2 <

β̂1 − β1

S/
√
Sxx

< tα

2
,n−2

)
= 1− α, (2.16)

wheretα

2
,n−2 is such thatP (|T | < tα

2
,n−2) = 1− α.

Rearranging the expression in brackets of (2.16) gives

P

(
β̂1 − tα

2
,n−2

S√
Sxx

< β1 < β̂1 + tα

2
,n−2

S√
Sxx

)
= 1− α. (2.17)

That is the CI forβ1 is

[A,B] =

[
β̂1 − tα

2
,n−2

S√
Sxx

, β̂1 + tα

2
,n−2

S√
Sxx

]
. (2.18)

The calculated values of̂β1, S andSxx for the overhead costs (Example 2.5) are
the following

β̂1 = 10.982, S = 1645.61, Sxx = 526656.9.

Also t0.025,14 = 2.14479. Hence, the95% CI for β1 is

[a, b] =

[
10.982− 2.14479

1645.61√
526656.9

, 10.982 + 2.14479
1645.61√
526656.9

]

= [6.11851, 15.8455]

We would expect (with 95% confidence) that one hour increase in labour will in-
crease the cost between£6.12 and£15.82.

Test ofH0 : β1 = 0 versusH0 : β1 6= 0

The null hypothesisH0 : β1 = 0 means that the slope is zero and a better model
is a constant model

Yi = β0 + εi, εi ∼
iid

N (0, σ2)
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showing no relationship between Y and X. From (2.15) we see that if H0 is true,
then

T =
β̂1

S√
Sxx

∼
H0

tn−2. (2.19)

This statistic can be used as a test function for the null hypothesis.

We rejectH0 at a significance levelα when the calculated, for a given data set,
value of the test function,Tcal, is in the rejection region, that is

|Tcal| > tα

2
,n−2.

Many statistical software give thep-value when testing a hypothesis. When the
p-value is smaller thenα then we may reject the null hypothesis on a significance
level≤ α.

Remark 2.4. Square root of the variancevar(β̂1) is called the standard error of̂β1

and it is denoted byse(β̂1), that is

se(β̂1) =

√
σ2

Sxx

.

Its estimator is

̂
se(β̂1) =

√
S2

Sxx
.

Often this estimated standard error is called the standard error. You should be
aware of the difference between the two.

�

Remark 2.5. Note that the(1− α)100% CI for β1 can be written as
[
β̂1 − tα

2
,n−2

̂
se(β̂1), β̂1 + tα

2
,n−2

̂
se(β̂1)

]

and the test statistic forH0 : β1 = 0 as

T =
β̂1

̂
se(β̂1)

.

�

As we have noted before we can also test the hypothesisH0 : β1 = 0 using the
Analysis of Variance table and the F test. In this case the twotests are equivalent
since if the random variableW ∼ tν thenW 2 ∼ F1,ν .
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2.6.2 Inference aboutβ0

Since we are studying the relationship betweenX andY , we are most interested
in β1. However, we can also carry out inference aboutβ0. The LSE ofβ0 is

β̂0 = Ȳ − β̂1x̄.

We have already seen the following result.

Theorem 2.4. In the full SLM the distribution of the LSE of β0, β̂0, is normal with

the expectation E(β̂0) = β0 and the variance var(β̂0) =
(

1
n
+ x̄2

Sxx

)
σ2, that is

β̂0 ∼ N
(
β0, σ

2

[
1

n
+

x̄2

Sxx

])
. (2.20)

�

Corollary 2.1. Assuming the full simple linear regression model, we obtain

CI for β0: [
β̂0 − tα

2
,n−2

̂
se(β̂0), β̂0 + tα

2
,n−2

̂
se(β̂0)

]

Test of the hypothesisH0 : β0 = β?
0 :

T =
β̂0 − β?

0

̂
se(β̂0)

∼
H0

tn−2,

where

̂
se(β̂0) =

√
S2

(
1

n
+

x̄2

Sxx

)
.

�

The calculated values for the overhead costs (Example 2.5) are following

β̂0 = 16310,
̂
se(β̂0) = 2421

Hence, the95% CI for β0 is

[a, b] = [16310− 2.14479× 2421, 16310 + 2.14479× 2421]

= [11117.5, 21502.5]

We would expect (with 95% confidence) that even if there is zero hours of labor,
the overhead cost is between£11117.5 and£21502.5.
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2.6.3 Inference aboutE(Y |X = xi)

In the simple linear regression model, we have

µi = E(Y |X = xi) = β0 + β1xi

and its LSE is
µ̂i = ̂E(Y |X = xi) = β̂0 + β̂1xi.

We may estimate the mean response at any value ofX which is within the range
of the data, sayx0. Then,

µ̂0 = ̂E(Y |X = x0) = β̂0 + β̂1x0.

Similarly as for the LSE ofβ0 and forβ1 we have the following Theorem.

Theorem 2.5. In the full SLRM the distribution of the LSE of µ0, µ̂0, is normal

with the expectation E(µ̂0) = µ0 and the variance var(µ̂0) = σ2
(

1
n
+ (x0−x̄)2

Sxx

)
,

that is

µ̂0 ∼ N

(
µ0, σ

2

[
1

n
+

(x0 − x̄)2

Sxx

])
. (2.21)

�

Corollary 2.2. In the full simple linear regression model, we have

CI for µ0: [
µ̂0 − tα

2
,n−2ŝe(µ̂0), µ̂0 + tα

2
,n−2ŝe(µ̂0)

]

Test of the hypothesisH0 : µ0 = µ∗:

T =
µ̂0 − µ∗

ŝe(µ̂0)
∼
H0

tn−2,

where

ŝe(µ̂0) =

√
S2

(
1

n
+

(x0 − x̄)2

Sxx

)
.

�

Remark 2.6. Care is needed when estimating the mean atx0. It should only be
done ifx0 is within the data range. Extrapolation beyond the range of the given
x-values is not reliable, as there is no evidence that a linearrelationship is appro-
priate there.

�
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2.6.4 Prediction Interval for a new observation

Apart from making inference on the mean response we may also try to do it for
a new response itself, that is for an unknown (not observed) response at somex0.
For example, we might want to predict an overhead cost for another department
of the same structure whose total labor hours arex0 (Example 2.5). In this section
we derive aPrediction Interval (PI) for a response

Y0 = β0 + β1x0 + ε0 = µ0 + ε0, ε0 ∼ N (0, σ2)

for which thepoint prediction is µ̂0 = β̂0 + β̂1x0.

By Theorem 2.5 we have
µ̂0 ∼ N (µ0, aσ

2),

wherea =
(

1
n
+ (x0−x̄)2

Sxx

)
.

To obtain a prediction interval (PI) for the unknown observation we may use the
point predictor and its distribution as follows. First, we will find the distribution
of µ̂0 − Y0. Note that for

µ̂0 − Y0 = µ̂0 − (µ0 + ε0),

we haveE(µ̂0 − Y0) = 0 and

var(µ̂0 − Y0) = var(µ̂0) + var(µ0 + ε0) = aσ2 + σ2 = σ2(1 + a).

This is becausêµ0 is the estimator based on the random sampleY1, . . . , Yn and
not onY0, i.e., it is independent ofY0. We get,

µ̂0 − Y0 ∼ N (0, σ2(1 + a)).

Standardizinĝµ0 − Y0 and replacingσ2 by its estimatorS2 gives

µ̂0 − Y0√
S2 [1 + a]

∼ tn−2.

Hence, a(1− α)100% PI for Y0 is

µ̂0 ± tα

2
,n−2

√
S2

{
1 +

1

n
+

(x0 − x̄)2

Sxx

}
.

This interval is wider than the CI for the mean responseµ0. This is because to
predict a new observation rather than a mean, we need to add variability of the
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additional random errorε0. Again, we should only make predictions for values of
x0 within the range of the data.

A part of MINTAB output for the example on the overhead cost (Example 2.5)
gives the confidence and prediction intervals (here they arefor x0 = 1000 hours.)

Predicted Values for New Observations
New
Obs Fit SE Fit 95% CI 95% PI
1 27292 428 (26374, 28210) (23645, 30939)

Values of Predictors for New Observations
New Obs x
1 1000

MINITAB
Stat→ Regression→ Fitted Line Plot...

Options
Prediction intervals for new observations
1000

We may say, with 95% confidence, that when the total direct labour hours are
equal to 1000, then the expected total departmental cost would be between£26374
and£28210, however if we were to observe the total cost for a 1000 hours of
labour it might be anything between£23645 and£30939.

Figure 2.15: Data, fitted line plot, CI for the mean and PI for anew observation at
anyx0.
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To obtain such plot in MINITAB:
Stat→ Regression→ Fitted Line Plot...

Options
Display Options
X Display confidence interval
X Display prediction interval
Confidence level: 95.0


