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2.6 Inference about the regression parameters

Example 2.5. Overheads.

A company builds custom electronic instruments and commaponents. All

jobs are manufactured to customer specifications. The firmsax@ be able to
estimate its overhead cost. As part of a preliminary ingesiton, the firm decides
to focus on a particular department and investigates tl¢ioaship between total
departmental overhead cost (Y) and total direct labor h{XlysThe data for the

most recent 16 months are plotted in Figure 2.14.

Two objectives of this investigation are
1. to summarize for management the relationship betweahdepartmental
overhead and total direct labor hours.

2. to estimate the expected and to predict the actual tofrtraental over-
head from the total direct labor hours.

Fitted Line Plot
y= 16310 + 10.98 x

s 1845.51
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R-Sqfadj)  60.0%
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Figure 2.14: Plot of overheads data

The regression equation is
Ovhd = 16310 + 11.0 Labor

Pr edi ct or Coef SE Coef T P
Const ant 16310 2421 6.74 0. 000
Labor 10.982 2.268 4.84 0. 000

S =1645.61 R-Sq = 62.6% R-Sq(adj) = 60.0%
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Anal ysi s of Variance

Sour ce DF SS MS F P
Regr essi on 1 63517077 63517077 23.46 0.000
Residual Error 14 37912232 2708017

Tot al 15 101429309

Unusual QObservati ons
Obs Labor Ovhd Fit SE Fit Residual St Resid
6 1067 24817 28028 413 -3211 -2.02R

R denotes an observation with a | arge standardi zed resi dual .

Comments:

e The model fit isy; = 16310 + 11z,. There is a significant relationship
between the overheads and the labor hoprs ().001 in ANOVA).

e The increase of labor hours by 1 will increase the mean oeeihby about
£11 (B, = 11.0).

e There is rather large variability in the data; the perceataigotal variation
explained by the model is rather smaliy(= 62.6).

The model allows us to estimate the total overhead cost ardidn of labour

hours, but as we noticed, there is large variability in theaddn such a case,
the point estimates may not be very reliable. Anyway, postineates should
always be accompanied by their standard errors. Then wdsafirad confidence
intervals (CI) for the unknown model parameters, or test Ihnm-significancem

Note that for the simple linear regression model

Y; = By + Bix; + &, wheree; ~ N(0,0?), (2.13)

iid
we obtained the following LSE of the parametggsand 3 :
=Y - Bz
L= > i (i = 2)(Y; = Y)
E?:l(xi —z)?

We now derive results which allow us to make inference abbetregression
parameters and predictions.

Bo

o)
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2.6.1 Inference abouts;

We proved the following result in Section 2.3.
Theorem 2.3. In the full simple linear regression model (SLRM) the distribution
of the LSE of /31, 31, isnormal with the expectation E(3;) = (5, and the variance
var(fy) = S”—jz, that is
pr~N <B1, S—) . (2.14)
O
Remark 2.3 For large samples, where there is no assumption of nornlity,
the sampling distribution of; is approximately normal. O

Theorem 2.3 allows us to derive a confidence interval (Cl)doand a test of
non-significance fof;. After standarisation of; we obtain

B~ i

However, the error variance is usually not known and it is$aregd by its estimator.
Then the normal distribution changes to a Studedhistribution. The explanation
is following.

Lemma2.1.1f Z ~ N(0,1) and U ~ 2, and Z and U are independent, then
A

\/U/VN

t,.

Here we have,

_ BB
Z_U/m N(0,1).

(n —2)5?

2
2 ~ Xn-2

We will see later that
U=

o

andsS? andBl are independent. It follows that
Bi—8 ~
U/l\/sa:w — Bl_ﬁl Nt
w25 S/ 7

02(n—2)

(2.15)
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Confidence interval for 3,
To find a CI for an unknown parametémeans to find values of the boundaries
A and B which satisfy

PA<f<B)=1—-«

for some smalky, that is for a high confidence levél — «)100%. From (2.15)
we have

b — b
Pl —te, < <teno|=1—a, 2.16
( i S, e T (220

whereta ,, 5 is such that’(|T'| < ta ,) =1 — «a.

Rearranging the expression in brackets of (2.16) gives

—~ S ~ S
P —ta p 9o— ta po——| =1—qa. 2.17
<51 % n—2 Sm<51<51+ @, 2\/5—1’1’) e ( )
That is the ClI for5, is
[AB]—{E—:& 5 B+t i} (2.18)

The calculated values (15‘1, S andS,, for the overhead costs (Example 2.5) are
the following

B, =10.982, S = 1645.61, S,, = 526656.9.
AlSO ) 025,14 = 2.14479. Hence, thé5% Cl for 3, is

1645.61 1645.61

a, bl = [10.982 — 2.14479——==, 10.982 + 2.14479—===
la, ¢ V526656.9 V526656.9

= [6.11851, 15.8455]

We would expect (with 95% confidence) that one hour increasabiour will in-
crease the cost betweéf.12 and£15.82.

Testof Hy : 53 = 0versusHy : 51 #0

The null hypothesigd, : 5; = 0 means that the slope is zero and a better model
Is a constant model

Y = Bo + ¢, Eiifgl/\/’((),UQ)
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showing no relationship between Y and X. From (2.15) we saeitt is true,
then

o~

5; ~ th_s. (2.19)
VS o
This statistic can be used as a test function for the null thgsis.

T =

We rejectH, at a significance levelk when the calculated, for a given data set,
value of the test functiori,.;, is in the rejection region, that is

|Tcal‘ > tg,n_g.
2

Many statistical software give thevalue when testing a hypothesis. When the
p-value is smaller then then we may reject the null hypothesis on a significance
level < a.

Remark 2.4. Square root of the variancar(ﬁl) is called the standard error 6f
and it is denoted bye(5,), that is

-~ ag
se(fy) = S
Its estimator is
- S2
Se = .
B =13,
Often this estimated standard error is called the standaod. eYou should be
aware of the difference between the two. O

Remark 2.5. Note that theg1 — «)100% ClI for 5, can be written as

B — t%,n—286(51), B+ t%,n—286(51)

B Bt tgonase

and the test statistic fdfl, : 5; = 0 as

O

As we have noted before we can also test the hypotlésis3; = 0 using the
Analysis of Variance table and the F test. In this case thetésts are equivalent
since if the random variablé” ~ ¢, thenWW? ~ F .
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2.6.2 Inference abouts,

Since we are studying the relationship betweéeandY’, we are most interested
in 5;. However, we can also carry out inference ab@utThe LSE off, is

Eo =Y - B@-
We have already seen the following result.

Theorem 2.4.In thefull S_M the distribution of the LSE of 53, BO, isnormal with
the expectation E(3,) = 3, and the variance var(3,) = <% + ;_2> o?, thatis

~ ,[1 72
Bo ~ N | fo, 0" | =+ : (2.20)
no Se
0
Corollary 2.1. Assuming the full simple linear regression model, we obtain
Cl for fy:
{Eo - tg,n—25€(30)7 Bo + tg,n—zsﬁ’(go)}
Test of the hypothesisH, : 5, = 5;:
T = O/_A\BO I"{V tn—2,
se(fo)
where
SN 1 T2
= 2 —
se(Bo) \/S <n+5m).
O

The calculated values for the overhead costs (Example &5pkowing

—

Bo = 16310, se(fBo) = 2421
Hence, thed5% ClI for j, is

[a, b] = [16310 — 2.14479 x 2421, 16310 + 2.14479 x 2421]
= [11117.5, 21502.5]

We would expect (with 95% confidence) that even if there i® reurs of labor,
the overhead cost is betwehl1117.5 an&21502.5.
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2.6.3 Inference aboutt(Y|X = x;)

In the simple linear regression model, we have
pi = E(Y|X =2;) = 8o + Bra;

and its LSE is - L
pi = E(Y|X = x;) = Bo + B

We may estimate the mean response at any valué which is within the range
of the data, say,. Then,

o = E(Y[X = z0) = Bo + Bﬂo-
Similarly as for the LSE ofj, and for3; we have the following Theorem.

Theorem 2.5. In the full SLRM the distribution of the LSE of 1y, i, is normal
with the expectation E(7iy) = po and the variance var(jig) = o2 (% + %)
that is

G~ N (MO, o2 H + (%SJD . (2.21)

O

Corollary 2.2. Inthefull ssmplelinear regression model, we have

Cl for pyp:

— —

To — ta n—2se(fo), Ho+ ta n—2se(fip)

Test of the hypothesisH, : 1o = p*:

O

Remark 2.6. Care is needed when estimating the meamyatlt should only be
done ifzy is within the data range. Extrapolation beyond the rangdefgiven
z-values is not reliable, as there is no evidence that a liretationship is appro-
priate there. O
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2.6.4 Prediction Interval for a new observation

Apart from making inference on the mean response we may Bldo to it for
a new response itself, that is for an unknown (not obsenesfianse at some,.
For example, we might want to predict an overhead cost fothemalepartment
of the same structure whose total labor hoursm@gréExample 2.5). In this section
we derive aPrediction Interval (Pl) for a response

Yo = Bo + Biwo + €0 = po + €0, €0 ~ N(0,07)
for which thepoint prediction is 1y = BO + Elxo.

By Theorem 2.5 we have
ZZO ~ N(Mo, aUQ)a
wherea = (% + %)

To obtain a prediction interval (PI) for the unknown obséiniawe may use the
point predictor and its distribution as follows. First, wdlind the distribution
of 7io — Yy. Note that for

fio — Yo = Ho — (po + €0),
we haveE(j, — Yy) = 0 and
var(fip — Yo) = var(fip) + var(uo + €0) = ao® + o® = o*(1 + a).

This is becausg is the estimator based on the random sample. ., Y, and
not onYy, i.e., itis independent dofy. We get,

fio = Yo ~ N(0,0%(1 + a)).

Standardizingi, — Y, and replacing? by its estimatoiS? gives

~ty_o.
Hence, &1 — «)100% PI for Yj is

1 _ )2
ot tan onfs2d1p Ly B =D
2 n S

This interval is wider than the CI for the mean respopge This is because to
predict a new observation rather than a mean, we need to atibility of the
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additional random errary. Again, we should only make predictions for values of
xo Within the range of the data.

A part of MINTAB output for the example on the overhead costgiple 2.5)
gives the confidence and prediction intervals (here theyoare, = 1000 hours.)

Predi cted Val ues for New Cbservati ons

New
Qbs Fit SE Fit 95% ClI 95% PI
1 27292 428 (26374, 28210) (23645, 30939)
Val ues of Predictors for New Observations
New QObs X
1 1000
MINITAB
Stat— Regression- Fitted Line Plot...
Options
\ Prediction intervals for new observation$
| 1000 ]

We may say, with 95% confidence, that when the total direcdalhours are
equal to 1000, then the expected total departmental codthelbetweert 26374
and £28210, however if we were to observe the total cost for a 1000 hotirs o
labour it might be anything betweef23645 and.£30939.

Fitted Line Plot
y= 16310 + 10.98 x

36000

Regression
- — 3595 CI
34000 + 5% P1

s 1845.61
£2.6%
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Figure 2.15: Data, fitted line plot, CI for the mean and PI foes observation at
any z.
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To obtain such plot in MINITAB:
Stat— Regression- Fitted Line Plot...
Options
| Display Options |
| v Display confidence intervdl
| v Display prediction interval|
|

Confidence Ieve \
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