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2.7 Further Model Checking

2.7.1 Outliers and influential observations

An outlier, in the context of regression is an observationséstandardized resid-
ual is large (in absolute value) compared with the rest ofda@. Recall the
definition of the standardized residuals:
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An outlier will usually be apparent from any of the residuktp.

Minitab prints a warning about observations with a standadiresidual greater
than (in absolute value) 2. However, with a large number seolmations there is
more chance that a strange observation will occur in a dat&esewe need to be
cautious when deciding about such values.

If we find an outlier we should check whether the observatias misrecorded
or miscopied, if so correct it. If it seems correctly recatdee should rerun the
analysis excluding the outlier. If the conclusions from sleeond analysis differ
substantially from the first one we should report both.

As well as outliers in the, values, we sometimes have valuesxoivhich are
different to the rest. To detect an observation with an uauswalue we use the
leverage This is defined as the;; value (as in the definition of the standardized
residual).

Note that
hi; = —+——F—) =2
Yr=3 ()
=1 =1
S0 on average an observation will have a leveragg/ef We shall regard an

observation withh;; > 4/n as having a large leverage and with > 6/n as a
very large leverage.

An observation with a large leverage is not a wrong obsermgtlthough if the

leverage is very large it is probably worth checking wetlwerit value has been
recorded correctly). Rather, it is@otentially influential observatign.e., one

whose omission would cause a big change in the parametaragss.

We can use a statistic called Cook’s distance to measurefloemce of an obser-
vation.
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For a simple linear regression model consider omittingthebservatiorix;, y;)
and refitting the model. Denote the new fitted valueg)y We define Cook’s
statistic for case to be

n

1 O
D; = 242 Z(y] —4;)°.

J=1

It can be shown that
Dj=—"Y——.
282 (1 — h”)Q
This shows thatD; depends on both the size of the residgaand the leverage
h;. So a large value ab,; can occur due to large or largeh;;.

A common technique to determinelif; is unusually large is to determine whether
D, is bigger than the 50th percentile of &, , distribution, where is the num-

ber of parameters in the model. If so it has a major influenctheriitted value.
Even if the largesD; is not bigger than this value the corresponding observation
could still be considered influential if it is a lot larger ththe second largest.

It is not recommended that influential observations be readpbut they indi-
cate that some doubt should be expressed about the comdssiwe without the
influential observations the conclusions might be rathiéemint.

MINITAB
To store values of,;; and ofD;
Stat— Regression— Regression..
Storage
| v Hi (leverages) |
| v Cook’s distance |
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Example2.6. Gesell's Score

The following data give Age at First Word() and Gesell Adaptive Scor&{ for
21 individuals from an investigation into cyanotic headeatise.

Obs.| = y | Obs.| =z Yy
1115] 95 11| 7| 113
2126 71 12| 9] 96
3|/10| 83| 13|10| 83
41 9| 91 14111 | 84
515|102 15|11 102
6|20 87| 16| 10| 100
7(118| 93 17| 12| 105
8| 11| 100 18| 42| 57
9| 8104 19|17 121

10{ 20| 94| 20|11| 86
21|10 100

Scatter plot of Gesell Adaptive Score versus Age at First Word
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The data represent the Gesell's adaptive scajesdrsus age of infantse( in
months) at first word. The scatter plot indicates two unusbakrvations: one is
a large value of) compared to other values at a simitaand one is a large value
of =, which is far from all the othex: values. See the details of this example on
the separate sheet given on-line on the course website.
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2.7.2 Transformation of the response

Example2.7. Plasma level of polyamine.
The plasma level of polyamin&{) was observed in 25 children of age 0 (new-

r=01]20.12 16.10 10.21 11.24 13.35
rxr=1| 875 945 1322 12.11 10.38
r=2| 925 687 721 844 7.55
r=3| 645 435 558 7.12 8.10
r=4] 515 6.12 570 425 7.98

Table 2.1: Plasma levels data

born) to 4 years oldX). The results are given in Table 2.1. We are interested
whether the level of polyamine decreases linearly whileage of children in-
creases up to four years. See the details of this exampleeosearate sheet
given on-line on the course website. 0

If the model checking suggests that the variance is not aafisbr that the data
are not from a normal distribution (these often happen toggthen it might be
possible to obtain a better model by transforming the olagemsy;,. Commonly
used transformations are

e Iny; this is particularly good iVar(Y;) oc [E(Y;)]2.
e /y; thisis particularly good iVar(Y;) oc £(Y5).

e 1/y.

They are special cases of a large family of transformatithresBox-Cox transfor-
mation,

A I

L1 when A £ 0;
Iny, when\=0.

MINITAB uses a simpler version of this transformation, tisag* when\ # 0 and
alsolny when\ = 0. The Box-Cox transformation estimates lambda that mini-
mizes the standard deviation of a standardized transfouaweéable. Trigonomet-
ric functions are also used in some cases, in particularrttisiae or arc-tangent.
In practice the log transformation is often the most usefidlia generally the first
transformation we try, but note all valuesi;pfneed to be positive.
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2.7.3 Lack of Fit Test

We have seen that the residuals for the plasma data are alyt ikbe a sample
from a normal distribution with a constant variance. Onehaf teasons can be
that the straight line is not a good choice of the model. Tai tan be easily
seen here, but we can also test lack of fit. The test functiatsis based on the
model assumptions so we should not see clear evidence agarsssumptions
for the test to be valid.

The test is possible when we have replications, that is nftae bne observa-
tion for some values of the explanatory variable. In Exantblewe have five
observations for each age.

Notation:
Denote byY;; the j-th response at;, « = 1,...,m, j = 1,...,n,;, thatis the
number of all observationsis= >"" | n;. The average responsesats

g

— 1
Yz‘zn—izymw

J=1

We denote the fitted responseraby }A/Z which is the same for all observations at
ZL‘Z'. |:|
The residuals;; are

e =Y — Y5

These differences arise for two reasons. Firstlyjttle observation of a given;

is an outcome of a random variable. Observations obtainethéosame value of
X may produce different values &f. Secondly the model we fit may not be a
good one.

How could we distinguish between the random variation aeddbk of fit? We
need more than one observatiorzato be able to do it.

The difference
Yy~ Y,

indicates the random variationat it is calledpure error. The difference between
the mean and the fitted response, i.e.,

Y:i_}/ia

indicatedack of fitat x;.
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Using the double index notation we may write the sum of scgimeresiduals as

SSp=> ZZ(Yz‘j -Y)

i=1 j=1

We can also define theure error sum of squaress

SSpp= fj(i@-j ~Y;)?

i=1 j=1

and thdack of fit sum of squaress a measure of lack of fit:

SSpor = DY (V= V)’

Theorem 2.6. In the simple linear regression model we have

SSE = SSLOF + SSPE

Proof.
SSp = Zi(m—f@)?
i=1 j=1
= ) DAY -Y)+ (Vi -V
i=1 j=1

m Tn;

_ Zi:mj_ﬁ)uzni(%—ﬁ)ZHZZ% -

=1 j=1 i=1 j=1

= SSpp+SSLr +2) (Yi— Y) > (Y —Y)
i=1 j=1

= SSpr + SSror

since3_’, (Y — V) = 0.

=~

P —

Y))



46 CHAPTER 2. SIMPLE LINEAR REGRESSION

This theorem shows how the residual sum of squares is spiitwo parts, one

due to the pure error and one due to the model lack of fit. To watkhe split of

the degrees of freedom, note that to calcukate ; we must calculate: sample
meansy;,i = 1, ..., m. Each sample mean takes up one degree of freedom. Thus
the degrees of freedom for pure error are- m. By subtraction, the degrees of
freedom for lack of fit are

VLOF:VE_VPE:(H_Q)_(TL—’ITL)Im—2.

This can be included in the Analysis of variance table a®vat

ANOVA table
Source of variation d.f. SS MS VR
Regression 1 SSk MSg e
Residual n—2 SSE MSp =22
Lack of fit m—2 SSpop  MSpop=22kef  AlSLer
Pure Error n—m SSpp  MSpp=222E
Total n—1 SSt

We will see later that
E[SSPE] = (n — m)02

whether the simple linear regression model is true or not.
It can also be shown that if the simple linear regression igdeue then
E[SSLOF] = (m — 2)0’2.

Hence, bothV/ Sy and M Sy, give us unbiased estimators @f, but the latter
one only if the model is true.

Let
Hy : simple linear regression model is “true”
H1 . _|H0

Then, undeiH,,
(m— Q)MSLOF - 2

m—2-*

o2 Ho

Also
(n — m)MSpE - 9

n—m

o2
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whatever the model.

Hence, undel,, the ratio of these two independent statistics divided leyré:
spective degrees of freedom is distributedas  ,,,,, namely

o MSLOF

F = ~
MSPE Ho

me2,n7m-

Note that we can only do this lack of fit test if we have repimas$. These have to
be true replications, not just repeated measurements @athe sampling unit.

Example2.8. Plasma level continued.

To illustrate these ideas we return to the plasma examplehade seen that the
residual plots show some evidence that a transformatiogessary. The analysis
of variance table for the plasma data after the log transdtion of the response
variable is following.

MINITAB

we can get the decomposition of the residual sum of squai@pume error sum of
squares and lack of fit sum of squares by clickingpone error within Options
underStat — Regression — Regression.

Sour ce DF SS MS F P
Regr essi on 1 2.6554 2.6554 60.63 0.000
Residual Error 23 1.0073 0.0438
Lack of Fit 3 0.0885 0.0295 0.64 0.597
Pure Error 20 0.9188 0.0459
Tot al 24 3.6627

The p-value is 0.597 so the numerical output shows no reasdaubt the fit of
this model. 0



