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2.7 Further Model Checking

2.7.1 Outliers and influential observations

An outlier, in the context of regression is an observation whose standardized resid-
ual is large (in absolute value) compared with the rest of thedata. Recall the
definition of the standardized residuals:

ri =
ei

S
√
1− hii

, hii =
1

n
+

(xi − x̄)2

Sxx

.

An outlier will usually be apparent from any of the residual plots.

Minitab prints a warning about observations with a standardized residual greater
than (in absolute value) 2. However, with a large number of observations there is
more chance that a strange observation will occur in a data set. So, we need to be
cautious when deciding about such values.

If we find an outlier we should check whether the observation was misrecorded
or miscopied, if so correct it. If it seems correctly recorded we should rerun the
analysis excluding the outlier. If the conclusions from thesecond analysis differ
substantially from the first one we should report both.

As well as outliers in they values, we sometimes have values ofx which are
different to the rest. To detect an observation with an unusual x value we use the
leverage. This is defined as thehii value (as in the definition of the standardized
residual).

Note that
n∑

i=1

hii =
n∑

i=1

(
1

n
+

(xi − x̄)2

Sxx

)
= 2,

so on average an observation will have a leverage of2/n. We shall regard an
observation withhii > 4/n as having a large leverage and withhii > 6/n as a
very large leverage.

An observation with a large leverage is not a wrong observation (although if the
leverage is very large it is probably worth checking wether thex value has been
recorded correctly). Rather, it is apotentially influential observation, i.e., one
whose omission would cause a big change in the parameter estimates.

We can use a statistic called Cook’s distance to measure the influence of an obser-
vation.



2.7. FURTHER MODEL CHECKING 41

For a simple linear regression model consider omitting theith observation(xi, yi)
and refitting the model. Denote the new fitted values byŷ(i). We define Cook’s
statistic for casei to be

Di =
1

2s2

n∑

j=1

(ŷ
(i)
j − ŷj)

2.

It can be shown that

Di =
e2i
2s2

hii

(1− hii)2
.

This shows thatDi depends on both the size of the residualei and the leverage
hii. So a large value ofDi can occur due to largeei or largehii.

A common technique to determine ifDi is unusually large is to determine whether
Di is bigger than the 50th percentile of anFp,n−p distribution, wherep is the num-
ber of parameters in the model. If so it has a major influence onthe fitted value.
Even if the largestDi is not bigger than this value the corresponding observation
could still be considered influential if it is a lot larger than the second largest.

It is not recommended that influential observations be removed, but they indi-
cate that some doubt should be expressed about the conclusions since without the
influential observations the conclusions might be rather different.

MINITAB
To store values ofhii and ofDi

Stat→ Regression→ Regression...
Storage

X Hi (leverages)
X Cook’s distance
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Example2.6. Gesell’s Score
The following data give Age at First Word (X) and Gesell Adaptive Score (Y ) for
21 individuals from an investigation into cyanotic heart disease.

Obs. x y Obs. x y
1 15 95 11 7 113
2 26 71 12 9 96
3 10 83 13 10 83
4 9 91 14 11 84
5 15 102 15 11 102
6 20 87 16 10 100
7 18 93 17 12 105
8 11 100 18 42 57
9 8 104 19 17 121

10 20 94 20 11 86
21 10 100

The data represent the Gesell’s adaptive scores (y) versus age of infants (x, in
months) at first word. The scatter plot indicates two unusualobservations: one is
a large value ofy compared to other values at a similarx and one is a large value
of x, which is far from all the otherx values. See the details of this example on
the separate sheet given on-line on the course website.
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2.7.2 Transformation of the response

Example2.7. Plasma level of polyamine.
The plasma level of polyamine (Y ) was observed in 25 children of age 0 (new-

x = 0 20.12 16.10 10.21 11.24 13.35
x = 1 8.75 9.45 13.22 12.11 10.38
x = 2 9.25 6.87 7.21 8.44 7.55
x = 3 6.45 4.35 5.58 7.12 8.10
x = 4 5.15 6.12 5.70 4.25 7.98

Table 2.1: Plasma levels data

born) to 4 years old (X). The results are given in Table 2.1. We are interested
whether the level of polyamine decreases linearly while theage of children in-
creases up to four years. See the details of this example on the separate sheet
given on-line on the course website.

�

If the model checking suggests that the variance is not constant, or that the data
are not from a normal distribution (these often happen together) then it might be
possible to obtain a better model by transforming the observationsyi. Commonly
used transformations are

• ln y; this is particularly good ifVar(Yi) ∝ [E(Yi)]
2.

• √
y; this is particularly good ifVar(Yi) ∝ E(Yi).

• 1/y.

They are special cases of a large family of transformations,the Box-Cox transfor-
mation, {

yλ−1
λ

, whenλ 6= 0;
ln y, whenλ = 0.

MINITAB uses a simpler version of this transformation, thatis yλ whenλ 6= 0 and
alsoln y whenλ = 0. The Box-Cox transformation estimates lambda that mini-
mizes the standard deviation of a standardized transformedvariable. Trigonomet-
ric functions are also used in some cases, in particular the arc-sine or arc-tangent.
In practice the log transformation is often the most useful and is generally the first
transformation we try, but note all values ofyi need to be positive.



44 CHAPTER 2. SIMPLE LINEAR REGRESSION

2.7.3 Lack of Fit Test

We have seen that the residuals for the plasma data are not likely to be a sample
from a normal distribution with a constant variance. One of the reasons can be
that the straight line is not a good choice of the model. This fact can be easily
seen here, but we can also test lack of fit. The test function isalso based on the
model assumptions so we should not see clear evidence against the assumptions
for the test to be valid.

The test is possible when we have replications, that is more than one observa-
tion for some values of the explanatory variable. In Example2.7 we have five
observations for each agexi.

Notation:
Denote byYij the j-th response atxi, i = 1, . . . , m, j = 1, . . . , ni, that is the
number of all observations isn =

∑m

i=1 ni. The average response atxi is

Ȳi =
1

ni

ni∑

j=1

Yij.

We denote the fitted response atxi by Ŷi, which is the same for all observations at
xi. �

The residualseij are
eij = Yij − Ŷi.

These differences arise for two reasons. Firstly thej-th observation of a givenxi

is an outcome of a random variable. Observations obtained for the same value of
X may produce different values ofY . Secondly the model we fit may not be a
good one.

How could we distinguish between the random variation and the lack of fit? We
need more than one observation atxi to be able to do it.

The difference
Yij − Ȳi

indicates the random variation atxi; it is calledpure error. The difference between
the mean and the fitted response, i.e.,

Ȳi − Ŷi,

indicateslack of fitatxi.
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Using the double index notation we may write the sum of squares for residuals as

SSE =

m∑

i=1

ni∑

j=1

(Yij − Ŷi)
2.

We can also define thepure error sum of squaresas

SSPE =

m∑

i=1

ni∑

j=1

(Yij − Ȳi)
2

and thelack of fit sum of squaresas a measure of lack of fit:

SSLoF =

m∑

i=1

ni∑

j=1

(Ȳi − Ŷi)
2

=
m∑

i=1

ni(Ȳi − Ŷi)
2.

Theorem 2.6. In the simple linear regression model we have

SSE = SSLoF + SSPE.

Proof.

SSE =

m∑

i=1

ni∑

j=1

(Yij − Ŷi)
2

=
m∑

i=1

ni∑

j=1

{(Yij − Ȳi) + (Ȳi − Ŷi)}2

=
m∑

i=1

ni∑

j=1

(Yij − Ȳi)
2 +

m∑

i=1

ni(Ȳi − Ŷi)
2 + 2

m∑

i=1

ni∑

j=1

(Yij − Ȳi)(Ȳi − Ŷi)

= SSPE + SSLoF + 2

m∑

i=1

(Ȳi − Ŷi)

ni∑

j=1

(Yij − Ȳi)

= SSPE + SSLoF

since
∑ni

j=1
(Yij − Ȳi) = 0.

�
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This theorem shows how the residual sum of squares is split into two parts, one
due to the pure error and one due to the model lack of fit. To workout the split of
the degrees of freedom, note that to calculateSSPE we must calculatem sample
meansȲi, i = 1, . . . , m. Each sample mean takes up one degree of freedom. Thus
the degrees of freedom for pure error aren − m. By subtraction, the degrees of
freedom for lack of fit are

νLoF = νE − νPE = (n− 2)− (n−m) = m− 2.

This can be included in the Analysis of variance table as follows:

ANOVA table

Source of variation d.f. SS MS VR
Regression 1 SSR MSR

MSR

MSE

Residual n− 2 SSE MSE = SSE

n−2

Lack of fit m− 2 SSLoF MSLoF=SSLoF

m−2
MSLoF

MSPE

Pure Error n−m SSPE MSPE=SSPE

n−m

Total n− 1 SST

We will see later that
E[SSPE] = (n−m)σ2

whether the simple linear regression model is true or not.

It can also be shown that if the simple linear regression model is true then

E[SSLoF ] = (m− 2)σ2.

Hence, bothMSPE andMSLoF give us unbiased estimators ofσ2, but the latter
one only if the model is true.

Let
H0 : simple linear regression model is “true”
H1 : ¬H0

Then, underH0,
(m− 2)MSLoF

σ2
∼
H0

χ2
m−2.

Also
(n−m)MSPE

σ2
∼ χ2

n−m
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whatever the model.

Hence, underH0, the ratio of these two independent statistics divided by the re-
spective degrees of freedom is distributed asFm−2,n−m, namely

F =
MSLoF

MSPE

∼
H0

Fm−2,n−m.

Note that we can only do this lack of fit test if we have replications. These have to
be true replications, not just repeated measurements on thesame sampling unit.

Example2.8. Plasma level continued.
To illustrate these ideas we return to the plasma example. Wehave seen that the
residual plots show some evidence that a transformation is necessary. The analysis
of variance table for the plasma data after the log transformation of the response
variable is following.

MINITAB
we can get the decomposition of the residual sum of squares into pure error sum of
squares and lack of fit sum of squares by clicking onpure error within Options
underStat → Regression → Regression.

Source DF SS MS F P
Regression 1 2.6554 2.6554 60.63 0.000
Residual Error 23 1.0073 0.0438

Lack of Fit 3 0.0885 0.0295 0.64 0.597
Pure Error 20 0.9188 0.0459

Total 24 3.6627

The p-value is 0.597 so the numerical output shows no reason to doubt the fit of
this model.
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