Question 2.3

Let W denote the boiling point of water measured in ${}^{\circ}C$ and Y in ${}^{\circ}F$. Then we can write

$$Y_i = \frac{9}{5}W_i + 32.$$

Also, denote by $\widehat{\beta}_{1F}$ the estimator of β_1 obtained for observations in Fahrenheit and by $\widehat{\beta}_{1C}$ the estimator obtained for observations in Celsius. Then

$$\widehat{\beta}_{1F} = \sum_{i=1}^{n} \frac{x_i - \overline{x}}{S_{xx}} Y_i = \sum_{i=1}^{n} c_i Y_i$$

$$= \sum_{i=1}^{n} c_i \left(\frac{9}{5} W_i + 32 \right) = \frac{9}{5} \sum_{i=1}^{n} c_i W_i + 32 \sum_{i=1}^{n} c_i$$

$$= \frac{9}{5} \sum_{i=1}^{n} c_i W_i = \frac{9}{5} \widehat{\beta}_{1C}$$

by $\sum_{i=1}^{n} c_i = 0$, where $c_i = \frac{x_i - \overline{x}}{S_{xx}}$. The estimators are proportional, that is

$$\widehat{\beta}_{1F} = \frac{9}{5}\widehat{\beta}_{1C}.$$

Question 3. We have

$$\begin{aligned} e_i &= Y_i - \widehat{Y}_i = Y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i = Y_i - \overline{Y} - \widehat{\beta}_1 (x_i - \overline{x}) \\ &= Y_i - \overline{Y} - \sum_{j=1}^n c_j Y_j (x_i - \overline{x}) = Y_i - \frac{1}{n} \sum_{j=1}^n Y_j - \sum_{j=1}^n c_j Y_j (x_i - \overline{x}) \\ &= Y_i - \sum_{j=1}^n \left[\frac{1}{n} + (x_i - \overline{x})c_j \right] Y_j \\ &= \left\{ 1 - \left[\frac{1}{n} + (x_i - \overline{x})c_i \right] \right\} Y_i - \sum_{i \neq i} \left[\frac{1}{n} + (x_i - \overline{x})c_j \right] Y_j \end{aligned}$$

This is a linear combination of independent random variables Y_j and so the variance of the combination is the combination of variances of Y_j with squared coefficients. Furthermore, $var(Y_j) = \sigma^2$, j = 1, ..., n. Hence,

$$\operatorname{var}(e_{i}) = \sigma^{2} \left\{ 1 - \left[\frac{1}{n} + (x_{i} - \overline{x})c_{i} \right] \right\}^{2} + \sigma^{2} \sum_{j \neq i} \left[\frac{1}{n} + (x_{i} - \overline{x})c_{j} \right]^{2}$$

$$= \sigma^{2} \left\{ 1 - 2 \left[\frac{1}{n} + (x_{i} - \overline{x})c_{i} \right] + \left[\frac{1}{n} + (x_{i} - \overline{x})c_{i} \right]^{2} + \sum_{j \neq i} \left[\frac{1}{n} + (x_{i} - \overline{x})c_{j} \right]^{2} \right\}$$

$$= \sigma^{2} \left\{ 1 - 2 \left[\frac{1}{n} + (x_{i} - \overline{x})c_{i} \right] + \sum_{j=1}^{n} \left[\frac{1}{n} + (x_{i} - \overline{x})c_{j} \right]^{2} \right\}$$

$$= \dots = \sigma^{2} \left[1 - \left(\frac{1}{n} + \frac{(x_{i} - \overline{x})^{2}}{S_{xx}} \right) \right]$$
by
$$\sum_{j=1}^{n} c_{j} = 0 \text{ and } \sum_{j=1}^{n} c_{j}^{2} = \frac{1}{S_{xx}}.$$